Problem Solving (Strategies)

Problem solving is integrated throughout the content strands. The development of problemsolving skills is a major goal of the mathematics program at every grade level. Instruction in the process of problem-solving, which should include problems involving Catholic Social Teaching, not just textbook word problems, will need to be integrated early and continuously into each student's mathematics education. Students must be helped to develop a wide range of skills and strategies for solving a variety of problem types.
The student will apply the following problem solving strategies to solve real life situations (use of manipulatives is imperative):

I. NUMBERS AND OPERATIONS

A. Number Sense

The student will:
 Count orally from 1 to 20 Touch and count objects 1 to 10
\qquad Recognize numerals from 1 to 10 in random order
\qquad Recognize the difference between numbers and letters

- 5._ Equate "zero" to quantity of nothing
- 6 . \qquad Print some numerals 1 to 10
$\square 7$. \qquad Demonstrate 1 to 1 correspondence

B. Addition and Subtraction

The student will:

- 1 . \qquad Guess the amount of objects before counting
$\square 2$. \qquad Use concrete objects to perform addition and subtraction with sums and differences
ㅁ 3 . \qquad Compare equal to, less than, greater than
C. Multiplication and Division - No objectives
D. Properties - No objectives
E. Fractions/Decimals/Percents - No objectives

II. MEASUREMENT

A. Linear Measurement

The student will:
$\square 1$. \qquad Guess the relative length of objects (i.e., longer, shorter or the same) before measuring

B. Weight

The student will:
\qquad Identify common objects as heavy or light to demonstrate understanding of the terms

C. Temperature - No objectives

D. Time/Money

The student will:

- 1 \qquad Recognize a clock and a calendar as measures of time
$\square 2$. \qquad Identify time (i.e., night-day; morning-afternoon; today- tomorrow-yesterday; day-week- month)

E. Capacity

The student will:

- 1 . \qquad Identify quantity and volume (i.e., full-empty; more than-less than)
$\square 2$. \qquad Experiment with and manipulate dry and liquid substances

III. GEOMETRY

The student will:
$\square \quad 1$. \qquad Identify the location of an object (i.e., top-bottom; over-under; outside-inside)
$\square 2$. \qquad Identify basic shapes (i.e., circle, square, triangle, diamond, heart, oval, rectangle)
\qquad Match shapesSort objects by size and by weight
\qquad Draw simple shapes without a pattern (i.e., circle, square, triangle)

IV. STATISTICS, PROBABILITY AND DATA ANALYSIS

The student will:
$\square 1$. \qquad Recognize and create pictographs, simple bar graphs and make graphs with concrete objects

V. ALGEBRA

The student will:

Recognize and duplicate simple sequential patterns using manipulatives (i.e., red block, blue block, red block or ABAB)
\qquad Identify an object that does not belong in a specific group

- 3 . Separate objects to form new groups (i.e., groups of animals such as baby animals and adult animals or farm animals and zoo animals)

VOCABULARY - Long, longer, short, shorter, tall, taller, small, medium, large, more, less, big, little, heavier, lighter, near, far

A "major goal for K-8 mathematics education should be proficiency with fractions (including decimals, percents and negative fractions), for such proficiency is foundational for algebra. Proficiency with whole numbers is a necessary precursor for the study of fractions as are aspects of measurement and geometry. These three areas - whole numbers, fractions and particular aspects of geometry and measurements are the Critical Foundations of Algebra".

It is expected that teachers will use technology when appropriate and available.

It is the intention that teachers are held accountable for the objectives in this curriculum and not necessarily for the contents of an entire or particular textbook.

Benchmarks for Critical Foundations

The following benchmarks should be mastered by most students prior to the years given. If they are not met by the indicated grade, intervention is most likely required.

Fluency With Whole Numbers:

1. By the end of Grade 2, students should be proficient with the addition and subtraction of whole numbers.
2. By the end of Grade 4, students should be proficient with multiplication and division of whole numbers.

Fluency with Fractions:

1. By the end of Grade 4, students should be able to identify and represent fractions and decimals, and compare them on a number line or with other common representations of fractions and decimals.
2. By the end of Grade 5, students should be proficient with comparing fractions and decimals and common percents, and with the addition and subtraction of fractions and decimals.
3. By the end of Grade 6, students should be proficient with multiplication and division of fractions and decimals.
4. By the end of Grade 6, students should be proficient with all operations involving positive and negative integers.
5. By the end of Grade 7, students should be proficient with all operations involving positive and negative fractions.
6. By the end of Grade 7, students should be able to solve problems involving percent, ratio, and rate and extend this work to proportionality.

Geometry and Measurement:

1. By the end of Grade 5, students should able to solve problems involving perimeter and area of triangles and all quadrilaterals having at least one pair of parallel sides (ex: trapezoids).
2. By the end of grade 5: students should be able to convert customary units of measure.
3. By the end of Grade 6, students should be able to analyze the properties of twodimensional shapes and solve problems involving perimeter and area, and analyse the properties of three-dimensional shapes and solve problems involving surface area and volume.
4. By the end of grade 6: students should be able to convert metric units of measure.
5. By the end of Grade 7, students should be familiar with the relationship between similar triangles and the concept of the slope of a line.
6. By the end of grade 7: students should be able to convert between customary and metric units of measure.

Usage of Calculators: Calculators should be discouraged in grades k-5. Calculators should be used judiciously in grades 6-8 when the skill focuses on process rather than computation. When used, proper use of calculators must be taught.

Problem Solving (Strategies)

Problem solving is integrated throughout the content strands. The development of problemsolving skills is a major goal of the mathematics program at every grade level. Instruction in the process of problem-solving, which should include problems involving Catholic Social Teaching, not just textbook word problems, will need to be integrated early and continuously into each student's mathematics education. Students must be helped to develop a wide range of skills and strategies for solving a variety of problem types.
The student will apply the following problem solving strategies to solve real life situations (use of manipulatives is imperative):

I. NUMBERS AND OPERATIONS

Teachers should reinforce the process of estimation at each grade level. The use of a "Guessing Jar" containing an unknown number of objects is one way to do this.
Goal: For students to be able to count in a variety of ways, and to master one-to-one correspondence.

A. Number Sense

The student will:

- 1 . \qquad Count to 100 by: ones, five, tens
- 2 . \qquad Count backwards from 10
ㅁ 3 . \qquad Demonstrate one-to-one correspondence for numbers to 31Recognize the number of objects in a small group without counting
[5 . \qquad Create a group of a given number of objects
$\square 6$. Read, order and write numbers 0 to 30
- 7 . Identify ordinal numbers from first to tenth
$\square 8$. \qquad Use language such as more than, less than, equal, before and after to compare small quantities
$\square 9$ \qquad Recognize number words to 10
ㅁ 10 . \qquad Identify one more and one less
\qquad Demonstrate place value with manipulatives: ones and tens

B. Addition and Subtraction

The student will:

- 1 . \qquad Count the number in combined groups
$\square 2$. \qquad Use concrete objects to solve problems with sums and differences up to 10

C. Multiplication and Division - No objectives

D. Properties - No objectives

E. Fractions/Decimals/Percents

The student will:
$\square 1$. \qquad Represent commonly used fractions such as $1 / 4$ and $1 / 2$

II. MEASUREMENT

Students should be able to estimate and measure and in both customary and metric measurements of length, weight, capacity, temperature, time and money. As their ability to measure increases, they should be able to determine the reasonableness of their answers. Students should use appropriate labels for answers.

A. Linear Measurement

The student will:
$\square 1$. \qquad Identify by direct comparison the difference between longer and shorter
$\square 2$. \qquad Using a non-standard unit of measurement determine longer and shorter (using a shoe, a hand, etc)
■ 3 . \qquad Order several objects according to length

B. Weight

The student will:
$\square 1$. \qquad Identify by direct comparison the difference between heavier and lighter

C. Temperature

The student will:
$\square 1$. \qquad Identify by direct comparison the difference between hotter and colder

D. Time/Money

The student will:
$\square 1$. \qquad Recite the 7 days of the week and the 12 months of the year
[1) 2 . Recognize parts of the calendar: day of the week, month, year, date

- 3 . \qquad Identify and determine the value of coins (penny, nickel, dime, quarter)
[4. \qquad Tell time to hour and half hour

III. GEOMETRY

The student will:
$\square 1$. \qquad Identify the difference between two-(circle, square, triangle, rectangle, oval, diamond, heart) and three-dimensional shapes (sphere, cube, cone, rectangular prism, pyramid)
$\square 2$. \qquad Demonstrate common language of spatial sense and show examples: inside, between, about, below, behind, near to, left, right, etc

IV. STATISTICS, PROBABILITY AND DATA ANALYSIS

The student will:

- 1 . \qquad Sort and classify objects according to their attributes (e.g., shape, size, color)
- 2 . \qquad Collect data about themselves and their surroundings (e.g., hair color, eye color, shoe color, birthdays)
$\square 3$. \qquad Construct and interpret graphs, real graphs (using physical objects), pictographs from previously collected data

V. ALGEBRA

The student will:
$\square 1$.
Sort objects and pictures by attributes
$\square 2$. \qquad Describe sorting rules

- 3 . Identify, create, copy and extend patterns using numbers, pictures, manipulatives, etc.

VOCABULARY

Equal, length, height, weight, add, subtract, shortest, tallest, longest, fewer, whole, part, total, next, last, sum, difference, first, next, last, inside, between, below, behind, left, right, above, middle, over, under, beside, through, on top of, next to, outside

Problem Solving (Strategies)

Problem solving is integrated throughout the content strands. The development of problemsolving skills is a major goal of the mathematics program at every grade level. Instruction in the process of problem-solving, which should include problems involving Catholic Social Teaching, not just textbook word problems, will need to be integrated early and continuously into each
student's mathematics education. Students must be helped to develop a wide range of skills and strategies for solving a variety of problem types.
The student will apply the following problem solving strategies to solve real life situations (use of manipulatives is imperative):

I. NUMBERS AND OPERATIONS

Goal: To teach students the concept of addition and subtraction and their inverse relationship to each other, whole number relationships including grouping in tens and ones. Students should be exposed to the appropriate vocabulary of the math concepts. Teachers should reinforce the process of estimation at each grade level.

A. Number Sense:

The student will:

- 1 Read and write numbers 0 to 100
 Count by 2's to 100
\qquad Compare sets of objects to show more than, less than, equal to using symbols
 Identify numbers that come before, after and between and represent them on a number line
$\square 5$. \qquad Identify place value of ones and tens up to 100
$\square 6$. \qquad Recognize two-digit numbers as groups of tens and ones

B. Addition and Subtraction

Goal: To demonstrate the relationship between addition and subtraction as an inverse relationship.
The student will:
$\square 1$. \qquad Use strategies (e.g., doubles, plus-minus-one, making 10, fact families, counting on, etc.) to generate basic facts and to demonstrate understanding of the inverse relationship between addition and subtraction

- 2 . \qquad Use objects, pictures, length-based model (e.g., connecting cubes), and number lines to illustrate addition and subtraction concepts
- 3 . \qquad Demonstrate single-digit addition and subtraction facts with automaticity (facts to 12)
■ 4. \qquad Add and subtract two-digit numbers without regrouping
$\square 5$. \qquad Choose the appropriate operation of addition or subtraction in word problems

C. Multiplication and Division - No objectives

D. Properties

The student will:

- 1 . \qquad Use the commutative and associative properties to add single-digit whole numbers (i.e., $2+5=5+2,3+(4+1)=(3+4)+1)$. Use the correct vocabulary when using this property.

E. Fractions/Decimals/Percents - No objectives

II. MEASUREMENT

Students should be able to estimate and measure in both customary and metric measurements of length, weight, capacity, temperature, time and money. As their ability to measure increases, they should be able to determine the reasonableness of their answers. Students should use appropriate labels for answers.

A. Linear Measurement

The student will:

- 1 . \qquad Measure length, width and height using non-standard and standard units
$\square 2$. \qquad Using non-standard units make and check estimates of length
$\square 3$. \qquad Compare and order lengths

B. Weight

The student will:

- 1 \qquad Measure weight using non-standard and standard units
[2 . Compare and order weights using non-standard and standard units
$\square 3$. \qquad Select an appropriate tool for measuring weight (i.e., a balance scale versus a ruler or a cup)

C. Temperature - No objectives

D. Time/Money

The student will:

- 1 . \qquad Read and identify dates and days of the week using a calendar
- 2 . \qquad Sequence days and months
- 3 . Tell time to the hour and half-hour
ㅁ 4 . Identify the value of coins including half-dollars and dollar coins
[5 . Add total value of mixed coins; pennies, nickels, dimes and quarters

E Capacity - No objectives

III. GEOMETRY

The student will:

- 1 . \qquad Compare similarities and differences between common geometric shapes
$\square 2$. \qquad Compose (combine) and decompose (take apart) basic shapes
$\square 2$. \qquad Describe characteristics of two-and three-dimensional geometric shapes to include squares, rectangles, triangles, circles, cubes, pyramid, sphere, cylinder, rectangular prism and cone

IV. STATISTICS, PROBABILITY, DATA ANALYSIS

The student will:

- 1. Use data collected to describe parts to whole
- 2._ Construct and interpret pictures and bar graphs

V. ALGEBRA

The student will:

- 1 . \qquad Use concrete objects and pictures to create patterns and describe them in a variety of ways
$\square 2$. \qquad Use number pairs to describe another number

Problem Solving (Strategies)

Problem solving is integrated throughout the content strands. The development of problemsolving skills is a major goal of the mathematics program at every grade level. Instruction in the process of problem-solving, includes problems involving Catholic Social Teaching, not just textbook word problems, and is integrated early and continuously into each student's mathematics education. Students are helped to develop a wide range of skills and strategies for solving a variety of problem types.
The student will apply the following problem solving strategies to solve real life situations (use of manipulatives is imperative):

I. NUMBERS AND OPERATIONS

Goal: For students to have fluency with muti-digit addition and subtraction as well as develop an understanding of the base-ten numeration system and place value concepts. Students should be exposed to and be able to use the appropriate vocabulary of the math concepts. Teachers should reinforce the process of estimation at each grade level. The use of a "Guessing Jar" containing an unknown number of objects is one way to do this.

A. Number Sense

The student will:
$\square 1$. \qquad Count in units and multiples of hundreds, tens and ones (skip counting)

- 2 . \qquad Demonstrate understanding of place value up to and including the thousands place using expanded form
■ 3 . \qquad Create equivalent representations of given numbers (such as 35 represented by 35 ones, 3 tens and 5 ones or 2 tens and 15 ones)
- 4. \qquad Count, read and write numbers to 1,000
 Use a number line to round numbers to the nearest tens and hundreds
- 6 . \qquad Identify numbers as odd or even
\qquad Compare and order numbers up to one thousand

B. Addition and Subtraction

The student will:
$\square 1$. \qquad Demonstrate addition and subtraction facts with fluency and automaticity (sums up to 20)

- 2 . \qquad Add and subtract whole numbers of at least four digits without renaming and regrouping
$\square 3$. \qquad Select and apply appropriate methods to estimate sums and differences or
- 4. calculate them mentally depending on the context and number involved
 Add and subtract whole numbers of at least four digits, demonstrating fluency with standard algorithms (renaming and regrouping)
\qquad Add more than two single and multi-digit numbers (numbers in a column)
$\square 6$. \qquad Explain why place value allows renaming and regrouping
$\square 7$. \qquad Add numbers with regrouping to the tens place (The focus is on the visualizing of making another group of ten, not on the algorithm procedure of lining up the numbers in place value spaces.)

C. Multiplication and Division - No objectives

D. Properties

The student will:
$\square 1$. \qquad Use the commutative and associative properties to add multiple-digit whole Numbers (i.e., $12+15-15+12 ; 25+(50+19)=(25+50)+19)$

II. MEASUREMENT

Students should be able to estimate and measure in both customary and metric measurements of length, weight, capacity, temperature, time and money. As their ability to measure increases, they should be able to determine the reasonableness of their answers. Students should use appropriate labels for answers.

A. Linear Measurement

The student will:
$\square 1$. \qquad Use rulers and other measurement tools
$\square 2$. \qquad Select an appropriate tool for measuring length (i.e., a ruler, yard stick, meter stick)

- 3 . \qquad Estimate, measure, add and subtract lengths using inches, feet and yards, centimeters and meters
$\square 4$. \qquad Partition lengths into equal-sized segments

B. Weight

The student will:

- 1 . \qquad Measure weight using customary and metric units (ounces, pounds, grams)
C. Temperature

The student will:

- 1 . \qquad Read a Fahrenheit and Celsius thermometer
[1 2 . Measure and record temperature using customary and metric thermometers (Fahrenheit and Celsius)

D. Time/Money

The student will:
$\square 1$. \qquad Identify the relationship between units of time (i.e., 24 hours/day; 7 days/week; 60 minutes/hour; 60 seconds/minute)
$\square 2$. \qquad Tell time and write it to the quarter hour and minute

- 3 . \qquad Describe time as A.M. or P.M., noon or midnight
\square. \qquad Add similar units of time (i.e., add 3 hours +2 hours, etc.)
$\square 5$. \qquad Add total value of mixed coins; pennies, nickels, dimes, quarters, half-dollars (sums less than $\$ 1$), dollar coins and dollar bills

E. Capacity:

The student will:
$\square 1$. \qquad Identify and compare measure of capacity using cups, pints, quarts and gallons

III. GEOMETRY

The student will:
$\square 1$. \qquad Describe characteristics of three-dimensional geometric solids to include rectangles, prisms, pyramids, spheres, cylinders and cones
$\square 2$. \qquad Compare and contrast the properties of two-dimensional figures (circle, triangle, rectangle, square) and three-dimensional solids (sphere, square pyramid, cone, cylinder and cube)
$\square 3$. Investigate the concept of perimeter and area
 Compute the perimeter of both regular and irregular figures
\qquad Identify the line of symmetry for various shapes (e.g., letters of the alphabet) along a line identify congruent shapes (mirror images)

IV. STATISTICS, PROBABILITY AND DATA ANALYSIS

No objectives in this grade but students should continue use graphic skills learned in previous grades.

V. ALGEBRA

The student will:
$\square 1$.
Create and recognize patterns using numbers

- 2 . \qquad Solve problems using patterns
$\square 3$. \qquad Find the missing number in an addition or subtraction problem

Problem Solving (Strategies)

Problem solving is integrated throughout the content strands. The development of problemsolving skills is a major goal of the mathematics program at every grade level. Instruction in the process of problem-solving, which should include problems involving Catholic Social Teaching, not just textbook word problems, will need to be integrated early and continuously into each student's mathematics education. Students must be helped to develop a wide range of skills and strategies for solving a variety of problem types.
The student will apply the following problem solving strategies to solve real life situations (use of manipulatives is imperative):

I. NUMBERS AND OPERATIONS

Goal: For students to develop the conceptual understanding of multiplication and division. The students will also gain a conceptual understanding of fractions. Teachers should reinforce the process of estimation at each grade level. Students should continue to determine the reasonableness of answers.

A. Number Sense

The student will:
 Recognize, read, count, compare and write numbers up to and including 100,000 (count by number patterns including tens and hundreds)
\qquad Use expanded form to write numbers in numerals to 100,000
$\square 3$. Identify place value to 100,000
$\square 4$. \qquad Round numbers to 1,000
\qquad Write word names for numbers with six digit numerals Identify Roman Numerals to 1,000 (using I,V,X, L, C, D and M)

B. Addition and Subtraction

The student will:

- 1 . \qquad Subtract across zeros with at least six digit numbers
$\square 2$. \qquad Add six digit numbers with and without regrouping

C. Multiplication and Division

The student will:
 Use repeated addition to model multiplication
 Use arrays, number lines, equal groups and area models to illustrate multiplication and division concepts and facts
\qquad Demonstrate automaticity and fluency with multiplication and division facts 0-12

- 4 . Multiply multiplicands of up to six digits by a single digit
- 5 . Relate multiplication and division as inverse operations using a variety of strategies

D. Properties

The student will:
$\square 1$ \qquad Use the property of one in multiplication and division

- 2 。 \qquad Use the property of zero in multiplication
$\square 3$. \qquad Use the associative and commutative properties of multiplication

E. Fractions/Decimals/Percents

The student will:
$\square 1$. \qquad Demonstrate that fractions are parts of unit wholes, parts of collections, and have locations on number lines
\qquad Identify and write mixed numbers without simplification

- 3 . Identify and write proper and improper fractions without simplification
$\square 5$. \qquad Compare and order simple fractions with common numerators, uncommon denominators, and benchmark fractions using models

II. MEASUREMENT

Students should be able to estimate and measure in both customary and metric measurements of length, weight, capacity, temperature, time and money. As their ability to measure increases, they should be able to determine the reasonableness of their answers. Students should use appropriate labels for answers.

A. Linear Measurement

The student will:
$\square 1$. \qquad Measure length to the nearest half unit

B. Weight - No Objectives

C. Temperature - No Objectives

D. Time/Money

The student will:

Count up to ten dollars

- 2 . Make change to one dollar by counting up
- 3 . \qquad Round amounts to the nearest dollar; the nearest ten dollars
$\square 4$. \qquad Recognize that dollars and cents are decimals, and that money may be represented as fractions of dollars (i.e., $1 / 4$ of a dollar is a quarter)
$\square 5$ \qquad Write money appropriately as decimals OR with a cent sign, not both
- 6 . \qquad Calculate elapsed time using hours and minutes (i.e., from 2:15 until 3:15 is one hour)
$\square 7$. \qquad Convert smaller measures of time into larger (i.e., 63 minutes $=1$ hour and 3 minutes; 17 days=two weeks and three days)
$\square 8$. \qquad Recognize expressions of time before and after the hour as being the same (10:45 is the same as a quarter to eleven)
$\square 9$. \qquad Create and use a calendar to determine a date some time (i.e., two weeks) in the future or in the past

E. Capacity

The student will:
$\square 1$. \qquad Measure capacity using cups, pints, quarts and gallons
$\square 2$. \qquad Describe the relationship of standard measurement to metric measurement (i.e., quarts are similar to liters)

III. GEOMETRY

The student will:
$\square 1$. \qquad Describe characteristics of two-dimensional shapes (rhombus, irregular figures) and three-dimensional shapes
$\square 2$. Compare and contrast the properties of two-dimensional (parallelograms) and three-dimensional geometric figures to include the rectangular prism and triangular pyramid

- 3 . Use tiles to measure perimeter and area of various rectangles
- 4. \qquad Identify parallel, perpendicular, and intersecting lines and rays. Define horizontal and vertical.
$\square 5$. \qquad Identify acute, obtuse, right and straight angles

III. STATISTICS, PROBABILITY, AND DATA ANALYSIS

The student will:

- 1 . \qquad Construct and analyze frequency tables, bar graphs, picture graphs and line plots and use them to solve problems
$\square 2$. Use spinners, coins and dice to predict outcomes and describe the concept of "chance" in terms of likely, unlikely or equally likely

III. ALGEBRA

The student will:

- 1 . \qquad Predict the next number in a pattern
$\square 2$. \qquad Name the previous number in a pattern

Problem Solving (Strategies)

Problem solving is integrated throughout the content strands. The development of problemsolving skills is a major goal of the mathematics program at every grade level. Instruction in the process of problem-solving, which should include problems involving Catholic Social Teaching, not just textbook word problems, will need to be integrated early and continuously into each student's mathematics education. Students must be helped to develop a wide range of skills and strategies for solving a variety of problem types.
The student will apply the following problem solving strategies to solve real life situations (use of manipulatives is imperative):

I. NUMBERS AND OPERATIONS

Goal: For students to develop fluency in multiplication and division. The students will extend their understanding of fractions and fractional parts. "Students will develop an understanding of decimals including the connections between fractions and decimals" Focal Points. Teachers should reinforce the process of estimation at each grade level. Students should continue to determine the reasonableness of answers.

A. Number Sense

The student will:
$\square 1$. \qquad Count, read, write, order, compare, estimate and round numbers to 1 million (<,>,+)
$\square 2$. \qquad Identify, place value and read and write numbers in word form from millionths to millions (i.e., Four thousand six hundred thirty-four and seven hundredths 4,634.07)

- 3 . Define prime and composite numbers
$\square 4$.

4. ___Identify prime numbers to 20
$\square 5$. \qquad Use factorization to express whole numbers as products of prime factors
B. Addition and Subtraction - Students should continue to practice
C. Multiplication

The student will:

- 1 . \qquad Multiply by two digit numbers and three digit numbers
$\square 2$. \qquad Demonstrate automaticity and fluency with multiplication and division facts (0-12)
$\square 3$. Divide two- and three-digit dividends by one digit
$\square 4$.
\qquad Show a remainder when dividing by one digit

D. Properties - No Objectives

Students should continue to use and explore the property of zero, the property of one and the associative and commutative properties and use the correct vocabulary associated with them.

E. Fractions/Decimals/Percents

The student will:
$\square 1$ \qquad Change improper fractions to mixed numbers
$\square 2$. \qquad Change mixed numbers to improper fractions

- 3. __Simplify fractions to lowest terms
$\square \quad 4$. Read, write and order fractions
- 5. ___Read, write and order mixed numbers
$\square 6$. \qquad Generate many fractions for the same value
$\begin{array}{ll}\square & 7 . \\ \square & 8 . \\ \square\end{array}$ Read, write and compare decimals as an extension of the base-ten system
- 9 . \qquad Locate decimals on a number line
- 10 . \qquad Compare and order whole numbers, fractions, decimals and percents
$\square \quad 11$. \qquad Write decimals as equivalent fractions to the thousandths place
- 12 . \qquad Add and subtract fractions with common denominators
- 13 . \qquad Add and subtract decimals

II. MEASUREMENT

Students should be able to estimate and measure in both customary and metric measurements of length, weight, capacity, temperature and time and money. As their ability to measure increases, they should be able to determine the reasonableness of their answers. Students should use appropriate labels for answers.

A. Linear Measurement

The student will:

- 1 . \qquad Measure length to the nearest $1 / 4$ and $1 / 8$ of an inch or to the nearest millimeter

B. Weight - No Objectives

C. Temperature - No Objectives

D. Time/Money

The student will:

- 1 . \qquad Count to one hundred dollars
$\square 2$. \qquad Make change to ten dollars
$\square 3$. \qquad Add and subtract elapsed time with regrouping (minutes greater than one hour becomes converted to an hour; days more than seven become a week)
$\square 4$. \qquad Use time applications to solve problems (elapsed time)

E. Capacity

The student will:
$\square 1$. \qquad Measure capacity using fluid ounces, cups, pints, quarts, gallons and liters

III. GEOMETRY

The student will:
$\square 1$. \qquad Compare and contrast the characteristics and properties of two-dimensional shapes (regular hexagon, pentagon, etc) and their corresponding threedimensional solids

- 2 .
. ___Classify two-dimensional figures- i.e., squares - as subsets of rectangles, and rectangles as subsets of parallelograms
- 3 . \qquad Predict and describe the result of the geometric transformations, such as reflection, translation and rotation using concrete objects (i.e., mirrors, paper folding, tracing)
- 4. \qquad Identify equilateral, isosceles, scalene and right triangles
$\square 5$. \qquad Measure volume of rectangular prisms using cubes
- 6 . \qquad Measure surface area with tiles
$\square 7$. \qquad Derive the formula for perimeter and area of polygons

IV. STATISTICS, PROBABILITY, AND DATA ANALYSIS

Students continue to use skills and tools from Grade 3.
The student will:

- 1 . \qquad Apply place value to use stem/leaf plots
$\square 2$. \qquad Model situations using experiments to determine probability and predict results
$\square 3$. \qquad Represent probability as a fraction

V. ALEGEBRA

The student will:
$\square 1$. \qquad Find the missing number in a pattern
$\square 2$. \qquad Identify missing operational signs in equations
$\square 3$. \qquad Recognize and use a variable in a number sentence

Problem Solving (Strategies)

Problem solving is integrated throughout the content strands. The development of problemsolving skills is a major goal of the mathematics program at every grade level. Instruction in the process of problem solving, which should include problems involving Catholic Social Teaching, not just textbook word problems, will need to be integrated early and continuously into each student's mathematics education. Students must be helped to develop a wide range of skills and strategies for solving a variety of problem types.
The student will apply the following problem solving strategies to solve real life situations (use of manipulatives is imperative):

I. NUMBERS AND OPERATIONS

Goal: For students to develop fluency with division of whole numbers, with addition and subtraction of fractions, and addition and subtraction of decimals. The students will extend their understanding of fractions and fractional parts. "Students will develop an understanding of decimals including the connections between fractions and decimals" Focal Points. Teachers should reinforce the process of estimation at each grade level. Students should continue to determine the reasonableness of answers.

A. Number Sense - No Objectives

B. Addition and Subtraction - No Objectives

Students should continue to practice skills.

C. Multiplication and Division

The student will:
$\square \quad 2$.
\qquad
$\square \quad 4$. \qquad

Write remainders as fractions Divide when zeros are present in the dividend Divide multi-digit dividends by multi-digit divisors
D. Properties - No Objectives

Students should continue to use and explore the property of zero, the property of one and the associative and commutative properties.

E. Fractions/Decimals/Percents

The student will:

- 2.

\qquad
(1) 3._A
$\begin{array}{ll}\square & 4 \\ \square & 5\end{array}$ \qquad
$\square \quad 6$. \qquad
$\square \quad 7$.
8. \qquad
ㅁ $\quad 9$. \qquad Find the least common multiple and the greatest common factor Find the least common denominator for two or more fractions Add and subtract fractions with like and unlike denominators Add and subtract mixed numbers with like and unlike denominators Change terminating decimals to fractions and fractions with decimals Add and subtract decimals Multiply and divide decimals (with both whole numbers and decimals in the divisor) Reduce fractions to lowest terms

II. MEASUREMENT

Students should be able to estimate and measure and in both customary and metric measurements of length, weight, capacity, temperature and time and money. As their ability to measure increases, they should be able to determine the reasonableness of their answers. Students should use appropriate labels for answers.

A. Linear Measurement

The student will:
$\square \quad 1$. \qquad Convert within customary units and metric units of measurement using multiplication and division (How many inches are in two feet? How many cm are in 36 meters? What fractional part of a foot is 3 inches?)

B. Weight

The student will:
$\square \quad 1$. \qquad Convert within the same system of weight using multiplication and division (How many ounces are in two pounds? How many grams are in 32 Kg ? What fractional part of a pound is 4 ounces?)

C. Temperature - No Objectives

D. Time/Money

The student will:
■ 2 . \qquad

Add, subtract, multiply and divide money amounts Make change to values greater than ten dollars
$\square 3$. \qquad Use time applications to solve problems (elapsed time)

III. GEOMETRY

The student will:
$\square \quad 1$. \qquad Identify and use formulas for area and perimeter for rectangles and triangles
\qquad Identify three-dimensional figures including faces, vertices, edges of cubes and pyramids

- 3 . \qquad Identify the effects of combining basic shapes (i.e., the area and perimeter of
$\square \quad 4$.

4.
5. \qquad Draw a pattern for a three-dimensional figure
\qquad Find the surface area and volume of three-dimensional shapes (rectangular prisms)
$\square \quad 6$. \qquad Derive the formula for the area of a triangle and shapes made from triangles

IV. STATISTICS, PROBABILITY AND DATA ANALYSIS

Goal: The student will display and interpret data and predict outcomes
The student will:
$\square \quad 1$. \qquad Construct, interpret and analyze bar graphs, line graphs and pictographs using whole numbers
$\square \quad 2$.
3. \qquad Compare data and predict outcomes for the data
$\square \quad 4$. \qquad Create a scatter plot using ordered pairs to graph points on a coordinate grid Compute the mean, median, mode and range of data sets

V. ALGEBRA

The student will:
$\square \quad 1$. \qquad Find the missing numbers in a sequence
$\begin{array}{ll}\square & 2 . \\ \square & 3 .\end{array}$ \qquad Identify the order of operations for simplifying mathematical equations
$\square \quad 4$. \qquad Simplify expressions using order of operations Write and solve equation using a variable

Middle School Math

Since not all students are ready to take a high school course in Algebra I, there are two pathways for math instruction to follow.

Non-Algebra Sequence

This math curriculum is designed to prepare students to take Algebra in the $9^{\text {th }}$ grade. It provides students with a solid pre-algebra program before they enter the Algebra program over a three-year period.

Algebra I Sequence

Grade 6, Grade 7 (Pre-Algebra), Grade 8 (Algebra I)
This math curriculum is designed to prepare students to take Algebra I in the $8^{\text {th }}$ grade. It provides students with a solid pre-algebra program before they enter the Algebra I high school course.

Non-Algebra Sequence

$6^{\text {th }}$ Grade

I. NUMBERS AND OPERATIONS

A. Number Sense

The student will:
$\square \quad 1$. \qquad Define and demonstrate exponential notation
$\square \quad 2$. \qquad Write large and small numbers using scientific notation
\qquad Read, write and plot real numbers on a number line, including solved inequalities
$\square \quad 4$. \qquad Demonstrate an understanding of the relationship between the absolute value of a rational number and distance on a number line. Use the symbol for absolute value.

- 5 . \qquad Identify the natural, whole and integer components of the real number system
$\square \quad 6$. \qquad Apply order of operations to simplify expressions

B. Addition and Subtraction

The student will:
$\square \quad 1$. \qquad Add and subtract integers with models and manipulation
$\square \quad 2$. \qquad Multiply and divide integers with models and manipulation
C. Multiplication and Division

The student will:
$\square \quad 1$. \qquad Use multiplication and division of fractions and decimals specifically to use, understand and interpret rates and ratios

D. Properties

The student will:
$\square \quad 1$. \qquad Identify and use the inverse property of multiplication (i.e., $1 / 2 * 2=1$)
2. \qquad Use the commutative, associative and identity properties and zero property of multiplication to demonstrate that expressions in different forms can be equivalent

E. Fractions/Decimals/Percents

The student will:

\square	1.
\square	2.
\square	3.
\square	4.
\square	5.
\square	6.
\square	7.
\square	8.

$\square \quad 2$.
\qquad Add and subtract fractions with like and unlike denominators
\qquad Add and subtract mixed numbers with like and unlike denominators Change terminating decimals to fractions and fractions to decimals

The student will:

1. \qquad Multiply fractions and mixed numbers
$\square 2$. \qquad Identify and use reciprocal numbers
$\square \quad 3$ \qquad Divide fractions and mixed numbers
$\square \quad 5$.
\qquad Round decimals and fractions
\qquad Convert between fractions, decimals and percent

II. MEASUREMENT

The student will:
$\begin{array}{ll}\square & 1 . \\ \square & 2 .\end{array}$ \qquad
3. \qquad Continue to measure with accuracy to the nearest $1 / 16^{\text {th }}$ inch and millimeter Continue to convert customary units of measure Convert metric units of measurement using multiplication and division

III. GEOMETRY

Goal: Students will identify, define and calculate area, perimeter, volume and surface area of two-dimensional and three-dimensional figures using the proper formulas and tools, in realworld and mathematical problems. Students will use formulas appropriately.

The student will:
1.
\qquad Identify properties of supplementary and complementary angles
2. Define properties of triangles as a figure whose interior angles add up to 180 degrees
$\square \quad 3$. \qquad Define basic transformations to include translation, reflection and rotation
4. \qquad Use geometric tools (protractor, straight edge) to draw and measure angles
\qquad Define similar and congruent figures and their corresponding line segments and angles
\qquad Identify properties of vertical, adjacent and straight angle
7. \qquad Calculate the area of squares, triangles, rectangles, parallelograms and circles and show why the formulas are valid (with manipulatives and concrete examples)

- 8. \qquad Understand and graph in the coordinate plane in all quadrants
$\square \quad 9$. \qquad Identify properties of quadrilaterals

IV. STATISTICS, PROBABILITY AND DATA ANALYSIS

Goal: Represent probabilities using whole numbers, fractions, decimals and percents.
The student will:
$\square \quad 1$. \qquad Construct, interpret and analyze bar graphs, line graphs, pictographs, histograms and circle graphs using fractions, decimals and percents
$\square \quad 2$. \qquad Calculate probabilities of dependent and independent events using realworld and mathematical problems with fractions, decimals and percents
$\square \quad 3$. \qquad Theoretical probability
\qquad Measures of central tendency: mean, median, mode and range

V. ALGEBRA

The student will:
$\square \quad 1$. \qquad Write mathematical expressions and equations that correspond to given situations
$\square \quad 2$. \qquad Evaluate expressions by plugging in for variables
$\square \quad 3$. \qquad Use expressions and formulas to solve problems
4. \qquad Understand and use variables appropriately to represent unknown values
5. Prove that the solutions to an equation are those values that make the equations true
6. \qquad Estimate and solve simple one-step equations
7. \qquad Construct and analyze tables and use equations to describe simple relationships (such as $3 \mathrm{x}=\mathrm{y}$)8. \qquad Identify and extend geometric and arithmetic sequences
\square
9. \qquad Write, solve and apply proportions

$7^{\text {th }}$ Grade

I. NUMBERS AND OPERATIONS

A. Number Sense

The student will:
$\square \quad 1$. \qquad Identify squares of numbers from 1-20
\square
\square
\square \qquad Define a square root as the inverse operation to squaring a number
$\square \quad 4$. \qquad Find the square roots using tables, estimation and calculators Apply order of operations to simplify expressions

B. Addition and Subtraction - No objectives

Students should continue to add and subtract signed numbers with and without manipulatives.

C. Multiplication and Division

$\square \quad 1$. \qquad Solve multi-step equations with signed numbers
$\square \quad 2$. \qquad Understand and use exponential form, including the laws of zero and positive exponents

- 3 . \qquad Use scientific notation to multiply and divide large and small numbers

D. Properties - No objectives

Students should continue to practice skills.
$\square \quad 1$. \qquad Use the commutative, associative and distributive properties to demonstrate that expressions in different forms can be equivalent

E. Fractions/Decimals/Percents

The student will:
$\square 1$. \qquad Develop meaning for percent greater than 100% and smaller than 1%
2. \qquad Solve a wide variety of percent problems including problems involving discounts, simple interest, taxes, tips and percent increase/decrease
ㅁ 3 . \qquad Compute addition, subtraction, multiplication and division of rational numbers
$\square \quad 4$. \qquad Divide fractions to solving equations of the form $\mathrm{ax}=\mathrm{b}$ where a and b are fractions
$\square \quad 5$. \qquad Use division to express any fraction as a decimal including infinite (or nonterminating) decimals
$\square \quad 6$. \qquad Calculate the percent of number

II. MEASUREMENT

The student will:
$\square \quad 1$ \qquad Continue to measure with accuracy to the nearest $1 / 16^{\text {th }}$ inch and millimeter
$\square \quad 2$. \qquad Continue to convert customary units of measure
3. \qquad Continue to convert metric units of measurement using multiplication and division
$\square \quad 4$. \qquad Convert between customary and metric units of measure

III. GEOMETRY

Students will use formulas appropriately.

The student will:
\qquad Identify basic elements of geometric figures using geometric tools (use compass protractor, straight edge where appropriate) - altitudes, midpoints, diagonals, perpendicular bisectors, central angles, radii, diameters and chords
\qquad Use geometric tools (protractor, straight edge) to draw and measure angles, triangles, squares and rectangles
\qquad Continue to use and recognize similar and congruent figures
4. \qquad Calculate area and circumference of circles, in terms of pi and with pi approximations
\qquad Compute the perimeter and area of regular and composite figures
$\square 6$. \qquad Estimate the perimeter and area of irregular figures
$\square \quad 7$. \qquad Compute the volumes and surface areas of regular prisms and cylinders using a variety of methods

- 8 . \qquad Solve area and volume problems where the area or volume is given, but one length is missing
$\square \quad 9$. \qquad Calculate the interior and exterior angles of various regular polygons
- 10 . \qquad Use deductive reasoning to determine the measure of an angle where the measure of one or more other angles in a figure are given
- $\quad 11$. \qquad Define and apply the Pythagorean Theorem in a variety of situations
$\square \quad 12$. \qquad Use tessellations to rotate and reflect geometric figures
$\square \quad 13$. \qquad Create, describe and extend visual geometric patterns

IV. STATISTICS, PROBABILITY AND DATA ANALYSIS

Students will use formulas appropriately. The student will:
Choose the most appropriate way to display and interpret a variety of data
sets such as bar graphs, line graphs, pictographs, histograms, stem-and-leaf
and circle graphs

V. ALGEBRA

Students will use formulas appropriately. The student will:
\qquad Solve problems about similar objects by using the scale factors that relate corresponding lengths
2. \qquad Use proportions to solve problems about similar objects by using the knowledge that the relationships of lengths within an object are preserved in similar objects
3. \qquad Use and understand proportional relationships to solve a variety of problems
4. \qquad Solve linear multi-step equations with one variable using inverse operations and identify those as properties of equality
$\square \quad 5$.
5. \qquad Use linear multi-step equations with one variable to solve problems
6. Use the properties of equality to express an equation in a new way, and then demonstrate that the solutions obtained for the new equation also serve the original equation
\qquad Use linear graphing, in slope-intercept form, to represent and solve problems
\qquad Write and evaluate an algebraic expression for a given situation using up to two variables
9. \qquad Recognize irrational numbers

10 \qquad Write, solve and graph solutions of one-step inequalities with a single variable
11. \qquad Recognize connections between any two representations (tables, graphs, words and equations of a given relationship, especially functions); determine whether a relation is a function
\qquad Create and extend patterns to represent and solve problems (including nonlinear patterns)
13. \qquad Write a function rule for arithmetic sequences (these are linear functions)

$8^{\text {th }}$ Grade

I. NUMBERS AND OPERATIONS

A. Number Sense

The student will:
$\begin{array}{ll}\square & 1 . \\ \square & 2 .\end{array}$ \qquad Identify squares roots of perfect squares from 1 to 400
\qquad Find the square roots of non perfect squares using tables, estimation and calculators
$\square \quad 3$.
3. \qquad Identify and describe the real number system subsets
$\square \quad 4$. \qquad Apply order of operations to simplify expressions, including exponents and Square roots

B. Addition and Subtraction - No objectives

Students should continue to add and subtract signed numbers.

C. Multiplication and Division

Continue to solve multi-step equations with signed numbers Continue to understand and use exponential form, laws of positive and negative integer exponents
$\square \quad 3$. \qquad Continue to use scientific notation to multiply and divide large and small Numbers, including the use of calculators

D. Properties - No objectives

Students should continue to practice skills.
$\square 1$. \qquad Factor and expand algebraic expressions using the distributive property
$\square \quad 2$. \qquad Recognize and use number properties (associative, commutative, identity, zero, distributive and closure)

E. Fractions/Decimals/Percents

The student will:

- $\quad 1 . \quad$| Continue to develop meaning for percent greater than 100% and smaller |
| :--- |
| than 1% |

Continue to solve a wide variety of percent problems including problems
involving discounts, simple interest, taxes, tips and percent increase/
decrease

II. MEASUREMENT

The student will:
2. \qquad
3. Continue to measure with accuracy to the nearest $1 / 16^{\text {th }}$ inch and millimeter Continue to convert customary units of measure Continue to convert metric units of measurement using multiplication and division
$\square \quad 4$. \qquad Continue to convert between customary and metric units of measure

III. GEOMETRY

Students will use formulas appropriately.

The student will:
Continue to identify basic elements of geometric figures using geometric
tools (use compass protractor, straight edge where appropriate) - altitudes,
midpoints, diagonals, perpendicular bisectors, central angles, radii,
diameters and chords

Middle School

IV. STATISTICS, PROBABILITY AND DATA ANALYSIS

Students will use formulas appropriately. The student will use a graphing calculator where appropriate. The student will:
$\square 1$. \qquad Continue to choose the most appropriate way to display, interpret and make predictions with a variety of data, using measures of central tendency when appropriate
$\square \quad 2$. \qquad Continue to recognize and be able to give examples of how the display of data sets can be manipulated to be misleading
$\square \quad 3$. \qquad Apply and analyze probabilities of multiple events (dependent and independent) using a variety of methods such as organized lists, tree diagrams and area models; record results as fractions, decimals and percents
$\square \quad 4$. \qquad Construct and analyze a scatter plot; draw a trend line through the data to make predictions, define and accurately use the terms positive correlation, negative correlation and no correlation
$\square \quad 5$. \qquad Continue to identify and describe permutations or combinations using the Counting Principle or a tree diagram

V. ALGEBRA

Students will use formulas appropriately. The student will:
\qquad Continue to solve problems about similar objects by using the scale factors and proportions that relate corresponding lengths
\qquad Continue to use and understand proportional relationships to solve a variety of problems
\qquad Continue to solve and graph linear multi-step equations with one or two variables
\qquad Continue to use the properties of equality to express an equation in a new way, and then demonstrate that the solutions obtained for the new equation also serve the original equation
\qquad Continue to use linear graphing to represent and solve problems, using slopeintercept form
\qquad Continue to write, evaluate and simplify an algebraic expression for a given situation using any number of variables
7.
8. \qquad Write, solve and graph solutions of two-step inequalities with a single variable
\qquad Introduce solving two variable inequalities and graphing solutions on a coordinate plane
\qquad Continue to recognize connections between any two representations (tables, graphs, words and equations of a given relationship, especially functions); determine whether a relation is a function
\qquad Write a function rule for arithmetic sequences
\qquad Identify domain and range of a relation; identify independent and dependent variable in a relation
12. \qquad Solve literal linear equations for a given variable

Algebra I Sequence
 Grade 6, Grade 7 (Pre-Algebra), Grade 8 (Alegbra I)

$6^{\text {th }}$ Grade

I. NUMBERS AND OPERATIONS

A. Number Sense

The student will:

- 1. Define and demonstrate exponential notation
$\square \quad 2$. \qquad Write large and small numbers using scientific notation

3. ___ Read, write and plot real numbers on a number line, including solved inequalities
$\square \quad 4$. \qquad Demonstrate an understanding of the relationship between the absolute value of a rational number and distance on a number line. Use the symbol for absolute value.
$\square \quad 5$. \qquad Identify the natural, whole, integer, rational and irrational components of the real number system
$\square \quad 6$. \qquad Apply order of operations to simplify expressions

B. Addition and Subtraction

The student will:

- 1 . \qquad Add and subtract integers with models and manipulation
$\square \quad 2$. \qquad Multiply and divide integers with models and manipulation

C. Multiplication and Division

The student will:
$\square \quad 1$. \qquad Use multiplication and division of fractions and decimals specifically to use, understand and interpret rates and ratios

D. Properties

The student will:
1.
2. \qquad Identify and use the inverse property of multiplication (i.e., $1 / 2 * 2=1$)
\qquad Use the commutative, associative and identity properties and zero property of multiplication to demonstrate that expressions in different forms can be equivalent

E. Fractions/Decimals/Percents

The student will:

	1.	Multiply fractions and mixed numbers
	Identify and use reciprocal numbers	
	3.	Divide fractions and mixed numbers
R	4.	Round decimals and fractions
5.	Convert between fractions, decimals and percent	
Calculate the percent of a number		

II. MEASUREMENT

The student will:
$\square \quad 2$. \qquad
$\square \quad 3$. \qquad Continue to measure with accuracy to the nearest $1 / 16^{\text {th }}$ inch and millimeter Continue to convert customary units of measure Convert metric units of measurement using multiplication and division

III. GEOMETRY

Goal: Students will identify, define and calculate area, perimeter, volume and surface area of two-dimensional and three-dimensional figures using the proper formulas and tools, in realworld and mathematical problems. Students will use formulas appropriately.
The student will:
\qquad Identify properties of supplementary and complementary angles
$\square \quad 2$. \qquad Define properties of triangles as a figure whose interior angles add up to 180 degrees

ㅁ 3 .
 \qquad
 $\square \quad 4$.
 \qquad
 $\square \quad 5$.
 \qquad

 Define basic transformations to include translation, reflection and rotation Use tessellations to rotate and reflect geometric figures Use geometric tools (protractor, straight edge) to draw and measure angles, triangles, squares and rectangles$\square \quad 6$. \qquad Define similar and congruent figures and their corresponding line segments and angles
$\begin{array}{ll}\square & 7 . \\ \square & 8\end{array}$
7. ___ Identify properties of vertical, adjacent and straight angle

\qquad

 Calculate the area of squares, triangles, rectangles, parallelograms and circles and explain why the formulas are valid (with manipulatives and concrete examples)$\square \quad 9$. \qquad Find volume and surface area of rectangular and triangular prisms
10. \qquad Solve area and volume problems where the area or volume is given, but one length is missing

- 11 . \qquad Understand and graph in the coordinate plane in all quadrants

12. \qquad Identify properties of quadrilaterals

IV. STATISTICS, PROBABILITY AND DATA ANALYSIS

Goal: Represent probabilities using whole numbers, fractions, decimals and percents. The student will:
$\square \quad 1$. \qquad Construct, interpret and analyze bar graphs, line graphs, pictographs, histograms and circle graphs using fractions, decimals and percents
ㅁ $\quad 2$. \qquad Calculate probabilities of dependent and independent events and make Predictions using real-world and mathematical problems with fractions, decimals and percents
ㅁ $\quad 3$. \qquad Theoretical and experimental probability
4. \qquad Measures of central tendency: mean, median, mode and range

V. ALGEBRA

The student will:
$\square \quad 1$. \qquad Write mathematical expressions and equations that correspond to given situations
2. \qquad Evaluate expressions by plugging in for variables
3. Use expressions and formulas to solve problems
4. \qquad Understand and use variables appropriately to represent unknown values
5. \qquad Prove that the solutions to an equation are those values that make the equations true
6. Estimate and solve simple one-step equations
7. \qquad Construct and analyze tables and use equations to describe simple relationships (such as $3 \mathrm{x}=\mathrm{y}$)
8. \qquad Identify and extend geometric and arithmetic sequences; write a function rule for arithmetic sequences
9. \qquad Write, solve and apply proportions

(7 ${ }^{\text {th }}$ Grade - Pre-Algebra)

I. NUMBERS AND OPERATIONS

A. Number Sense

The student will:

$\square 3$. \qquad
$\square \quad 4$. \qquad Identify squares of numbers from 1-20 Define a square root as the inverse operation to squaring a number Find the square roots using tables, estimation and calculators Apply order of operations to simplify expressions

B. Addition and Subtraction - No objectives

Students should continue to practice skills..

C. Multiplication and Division

$\square \quad 1$. \qquad Solve multi-step equations with signed numbers
2. \qquad Understand and use exponential form, laws of exponents and integer exponents
$\square \quad 3$. \qquad Use scientific notation to multiply and divide large and small numbers

D. Properties - No objectives

Students should continue to practice skills.

E. Fractions/Decimals/Percents

The student will:
$\square \quad 1$. \qquad Develop meaning for percent greater than 100% and smaller than 1%
$\square \quad 2$. \qquad Solve a wide variety of percent problems including problems involving discounts, simple interest, taxes, tips and percent increase/decrease
$\square \quad 3$. \qquad Compute addition, subtraction, multiplication and division of rational numbers
$\square \quad 4$. \qquad Divide fractions to solving equations of the form $\mathrm{ax}=\mathrm{b}$ where a and b are fractions
$\square \quad 5$. \qquad Use division to express any fraction as a decimal including infinite (or nonterminating) decimals

II. MEASUREMENT

The student will:
\qquad Continue to measure with accuracy to the nearest $1 / 16^{\text {th }}$ inch and millimeter
$\square \quad 2$. \qquad Continue to convert customary units of measure
$\square 3$. \qquad Continue to convert metric units of measurement using multiplication and division
$\square \quad 4$. \qquad Convert between customary and metric units of measure

III. GEOMETRY

Students will use formulas appropriately.
The student will:
$\square \quad 1$. \qquad Identify basic elements of geometric figures using geometric tools (use compass protractor, straight edge where appropriate) - altitudes, midpoints, diagonals, perpendicular bisectors, central angles, radii, diameters and chords
2. \qquad Calculate area and circumference of circles, in terms of pi and with pi approximations Compute the perimeter and area of regular and composite figures
5. \qquad Estimate the perimeter and area of irregular figures
Compute the volumes and surface areas of regular pyramids and cylinders using a variety of methods
\qquad Calculate the interior and exterior angles of various regular polygons
7. \qquad Use deductive reasoning to determine the measure of an angle where the measure of one or more other angles in a figure are given
\qquad Define and apply the Pythagorean Theorem in a variety of situations
9. \qquad Apply transformations to plane figures, including graphing pre-image and image in the coordinate plane using appropriate notation

- 10 . \qquad Construct 3-D models given the top or bottom, side and front views (isometric drawings)
$\square \quad 11$. \qquad Describe and apply relationships created by two parallel lines cut by a transversal

IV. STATISTICS, PROBABILITY AND DATA ANALYSIS

Students will use formulas appropriately. The student will:
\qquad Choose the most appropriate way to display and interpret a variety of data sets such as bar graphs, line graphs, pictographs, histograms and circle graphs
\qquad Make comparisons, predictions, inferences using information displayed in all types of graphs
3. \qquad Use mean, median, mode and range to draw conclusions about data and to make predictions
4. \qquad Recognize and be able to give examples of how the display of data sets can be manipulated to be misleading
■ 5 \qquad Calculate and analyze probabilities of multiple events (dependent and independent) using a variety of methods such as organized lists, tree diagrams and area models; record results as fractions, decimals and percents
6. \qquad Recognize probability of multiple events as either multiplication or addition problems
$\square \quad 7$. \qquad Continue to use probabilities and to make predictions using real-world and mathematical problems with fractions, decimals and percents
$\square \quad 8$. \qquad Organize and interpret in a scatter plot; Draw a trend line through the data to make predictions
$\square \quad 9$. \qquad Define and accurately use the terms positive correlation, negative correlation and no correlation
10. \qquad Define and accurately use the terms probability, odds and chance

V. ALGEBRA

Students will use formulas appropriately. The student will:
\qquad Solve problems about similar objects by using the scale factors that relate corresponding lengths
\qquad Use proportions to solve problems about similar objects by using the knowledge that the relationships of lengths within an object are preserved in similar objects
3. \qquad Use and understand proportional relationships to solve a variety of problems
4. \qquad Solve linear multi-step equations with one variable using inverse operations
5. \qquad Use linear multi-step equations with one variable to solve problems
6. \qquad Use the properties of equality to express an equation in a new way, and then demonstrate that the solutions obtained for the new equation also serve the original equation
\qquad Use linear graphing to represent and solve problems, including problems about the intersection point of two lines
$\square \quad 8$. \qquad Write and evaluate an algebraic expression for a given situation using up to three variables
9. \qquad Recognize irrational numbers
10. \qquad Write, solve and graph solutions of one-step inequalities with a single variable
11. \qquad Recognize connections between any two representations (tables, graphs, words and equations of a given relationship, especially functions); determine whether a relation is a function

Mathematics Curriculum Diocese of Richmond

Algebra I
(High School Course)

I. EXPRESSIONS AND EQUATIONS

The student will:
\qquad Use the order of operations to simplify numerical expressions (with and without grouping symbols) Use the order of operations to simplify variable expressions
\square
\square \qquad Evaluate algebraic expressions
$\begin{array}{ll}\square & 4 . \\ \square & 5 .\end{array}$
\qquad Translate phrases into variable expressions
\qquad Translate word sentences into equations

- 7. \qquad Define and use opposites and absolute values
$\square \quad 8$. \qquad Define and use the equality properties Define and use number properties to simplify expressions:
- closure properties
- commutative properties
- associative properties
- distributive properties
- identity properties
- property of reciprocals
- property of opposites
- property of opposites of a sum

II. REAL NUMBERS

The student will:

\square	$1 . \quad$
\square	$2 . \quad$
\square	3.
\square	4.
\square	5.

The student will: Identify real numbers on a number line
$\begin{array}{ll}\square & 2 . \quad \\ \square & 3 . \\ \text { A } \\ \square & 4 . \\ \square & 5 . \quad\end{array}$ Add, subtract, multiply and divide rational and irrational numbers Estimate square roots Identify the locations of square roots within the real number set
, Add, subtract, multiply and divide monomials with rational and irrational coefficients

III. LINEAR FUNCTIONS

The student will:
$\square \quad 1$. \qquad Solve equations using addition, subtraction, multiplication and division
\qquad Solve multi-step equations to include word problems and literal equations
$\square \quad 3$. \qquad Solve equations with the variable on both sides
\square
4. \qquad Solve equations using area/perimeter formulas of geometric figures
3. \qquad ${ }^{\wedge}$ Solve equations involving formulas for:

- age
- cost-income-value
- uniform motion
- percent
- work
- mixture problems

IV. PROPORTIONAL REASONING

The student will:

\square	1.
\square	2.
\square	3.
\square	4.
\square	5

$\square \quad 5$. \qquad Solve percent problems using ratio and proportion Solve direct, inverse and joint variation problems Solve percent problems using ratio and proportion

V. RELATIONS AND FUNCTIONS

The student will:
$\square \quad 1$. \qquad Compare and contrast concepts of relations and functions
$\square \quad 2$. \qquad ${ }^{\wedge}$ Determine the domain and range using graphs, ordered pairs and symbolic expressions
$\square \quad 3$. \qquad Define a function through the use of tables and graphs

VI. LINEAR FUNCTIONS

The student will:
$\square \quad 2$.
\qquad
3. \qquad
\qquad

- 7. Determine whether a point lies on a given line Graph lines from an $x y$ table of values Identify and graph vertical and horizontal lines to include the concept of zero and undefined slope Define and determine the slope of a line Write linear equations in point-slope, slope-intercept and standard form

VII. LINEAR INEQUALITIES

The student will:

\qquad Solve simple inequalities using addition, subtraction, multiplication and division
$\square \quad 2$. Solve multi-step inequalities to include those with the variable on both sides
$\square \quad 4$. Solve combined inequalities
5. Graph linear inequalities to include one or two variables

Mathematics Curriculum
Diocese of Richmond

Algebra I
 (High School Course)

VIII. SYSTEMS OF EQUATIONS/INEQUALITIES

The student will:
$\square \quad 2$. \qquad ${ }^{\wedge}$ Use graphs to solve systems of linear equations Use the substitution method to solve systems of linear equations Use addition or subtraction (elimination method) to solve systems of linear equations in two variables
■ 4. \qquad Use multiplication with the addition or subtraction (elimination method) to solve systems of linear equations in two variables

- 5 . \qquad ${ }^{\wedge}$ Use systems of linear equations in two variables to solve wind and water current problems
$\square \quad 6$. \qquad Graph systems of inequalities

7. \qquad ${ }^{\wedge}$ Solve linear systems containing one or two variables algebraically, to include Inequalities

IX. POLYNOMIALS

The student will:

1. \qquad Add and subtract polynomials
$\square \quad 2$. \qquad Multiply polynomials, to include horizontal and vertical form
2. \qquad Understand and apply rules of exponents involving monomials

X. FACTORING

The student will:

1. \qquad Simplify quotients of monomials using the greatest common factor

- 2 . \qquad Divide polynomials by monomials

3. \qquad Factor polynomials using the greatest common factor
4. Find the product of two binomials mentally
5. \quad F Factor differences of two squares
6. \qquad Factor perfect square trinomials
7. \qquad Factor trinomials whose quadratic coefficients are one
8. \qquad Factor trinomials whose quadratic coefficients are greater than one
9. \qquad Factor by grouping terms

XI. QUADRATIC FUNCTIONS

The student will:
\qquad Use the general properties of the parent graph of a parabola to include the horizontal shift, vertical shift and stretch factor
1.
2. \qquad ${ }^{\wedge}$ Graph quadratic equations
3. \qquad Solve quadratic equations by graphing
4. \qquad Solve quadratic equations by factoring, to include the zero-product property
5. \qquad Solve application problems by writing and factoring quadratic equations
6. \qquad Solve quadratic equations by using the quadratic formula
7. \qquad ${ }^{\wedge}$ Solve quadratic equations by completing the square

Mathematics Curriculum Diocese of Richmond

XII. OTHER NONLINEAR FUNCTIONS

The student will: (Using an $x y$ table)
$\square 1$. \qquad Plot cubic functions
\square
\square
\square \qquad Plot exponential functions
$\square \quad 4$.
\qquad Plot the square root functions
$\square \quad 5$. \qquad Graph absolute value functions

XIII. RATIONAL EXPRESSIONS AND EQUATIONS

The student will:
 Simplify rational expressions Multiply and divide rational expressions
\qquad Add and subtract rational expressions with like denominators using variables
\square
\square
\square Add and subtract rational expressions with unlike denominators using variables Simplify mixed expressions and complex fractions
6.
\qquad Simplify expressions using negative exponents

XIV. RADICAL EXPRESSIONS AND EQUATIONS

The student will:

\square	1.
\square	2.
\square	3.
\square	4.
\square	5.
\square	6.
\square	7.
\square	8.

\qquad Add, subtract, multiply and divide radical expressions
\qquad intercepts of the graph of quadratic equations

XV. ALGEBRAIC LOGIC

The student will:
$\square \quad 1$. \qquad Use properties of the number system to judge the validity of results, justify steps in a procedure and prove/disprove statements
$\square \quad 2$.
3. \qquad Use simple aspects of logical argumentation
$\square 3$. \qquad Solve problems using patterns

Algebra I
(High School Course)

**XVI. STATISTICS

The student will:
$\square \quad 1$. \qquad **Interpret variation and central measures of tendency in real-world contexts
$\square \quad 2$. \qquad **Calculate and interpret mean absolute deviation, standard deviation and z-scores

- 3 . \qquad **Use box-and-whisker plots to compare and contrast multiple univariate data sets
\qquad

4. **Determine the equation of best fit in order to make predictions **Solve real-world problems using mathematical models. Models will include linear and quadratic functions

Technology and Graphic Calculators

Students should also develop the strategic use of technology including graphing calculators. Graphing calculator use should be explicitly taught and used appropriately within the curriculum. Graphing calculators should be used judiciously only after the students have mastered the ability to manipulate the essential objectives by hand: this, of course, is handled by each individual teacher at the school level. Curriculum skills marked with an ** require the use of a graphing calculator, Computer Algebra System (CAS), or basic coding program such as Microsoft Excel. In addition, the graphing calculator or a CAS may be of benefit when completing objectives pertaining to the real-world application of algebraic concepts, which are marked with a ${ }^{\wedge}$.

Again, as with all technology, extreme discretion should be used when integrating a graphing calculator or CAS into the Algebra 1 curriculum. The goal is to provide students with a strong foundation for upper level mathematics.

Selection of a graphing calculator must be limited to those approved by the College Board for use on the SAT, ACT, AP.

I. REVIEW OF BASIC ALGEBRAIC CONCEPTS

The student will:
\qquad Identify, distinguish among, compare, order, and use various subsets of the real number system:

- natural numbers
- whole numbers
- integers
- rational numbers
- irrational numbers
- real numbers
\qquad Understand basic algebraic properties and use them efficiently to simplify algebraic expressions:
- reflexive, symmetric, and transitive properties
- associative properties
- commutative properties
- closure properties
- identity properties
- property of reciprocals
- property of opposites
- property of opposites of a sum
- multiplicative and additive properties of equalities and inequalities

3.

Apply the order of operations to simplify and evaluate expressions with and without variables and grouping symbols involving:

- fractions
- decimals
- negatives
- absolute value
- exponents

II. SOLVING EQUATIONS AND PROBLEMS

The student will:
 Use appropriate algebraic vocabulary:

- equation
- solve
- like (similar) terms
- combine like terms
- replacement set
- solution set
\qquad Translate verbal statements into algebraic expressions/equations and vice versa

3. \qquad Solve equations in one variable by applying real number properties
4. \qquad Solve multiple variable equations for a specific variable (literal equations)
5. \qquad Solve equations and problems with variables on both sides
6. \qquad Solve real-life application problems including the following types:

- multi-step problems
- age problems (including those involving age now, age in the past, and age in the future)
- percent problems
- consecutive integers / multiples
- rate-time-distance problems:
- motion in the same direction
- motion in opposite directions
- round trip problems
- area / perimeter / angle measures
- problems that do not have a solution

III. POLYNOMIALS

The student will:
$\square \quad 1$. \qquad Use appropriate algebraic vocabulary:

- monomial, binomial, trinomial, polynomial
- degree of a variable in a monomial
- degree of a monomial
- degree of a constant term
- degree of a polynomial

2. \qquad Write a polynomial is ascending / descending order of a specified variable
3. \qquad Add and subtract polynomials
4. ___ Multiply monomials using the rules of exponents to include:

- Raising a power to a given power
- Raising a product to a given power
 Find products in the following ways:
- multiply a polynomial by a monomial
- multiply two binomials (using FOIL or similar method)
- multiply a polynomial by a binomial

\square	6.	S
\square	$7 . _$	D
\square	$8 . \quad$	

\qquad Use the remainder and factor theorems to find factors of polynomials
9. Find rational roots of a polynomial

IV. FACTORING POLYNOMIALS

The student will:
$\square \quad 1$. \qquad Find quotients and factors as follows:

- find the GCF of several integers
- simplify quotients of monomials
- divide polynomials by monomials
- find the monomial factor (GCF) of a polynomial

2. \qquad Factor the following types of polynomials:

- difference of two perfect squares
- perfect square trinomials
- factoring by grouping terms
- apply factoring patterns for $x^{2}+b x+c$, where c is positive / negative
- apply factoring patterns for $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, where c is positive / negative
\qquad

5. \qquad Use factoring in solving polynomial equations Solve application problems by writing and factoring quadratic equations Solve polynomial equations and polynomial functions; identify roots, zeros, and multiples of each
$\begin{array}{ll}\square & 6 \\ \square & 7\end{array}$ \qquad Solve real life applications involving polynomials
6. \qquad Solve polynomial inequalities

V. RATIONAL EXPRESSIONS AND EQUATIONS

The student will:

\square	1.	Simplify rational expressions
\square	2.	Multiply rational expressions
\square	3.	Divide rational expressions
\square	4.	Add and subtract rational expressions with like denominators
\square	5.	Add and subtract rational expressions with unlike denominators
\square	6.	Graph rational functions
\square	7.	Simplify complex fractions
\square	8.	Evaluate exponential expressions containing negative and zero exponents
\square	9.	Find the domain and range of rational functions
\square	10.	Solve equations and inequalities having fractional coefficients
\square	11.	Solve fractional equations
\square	12.	Solve real-life equations and identify those which have no solution

VI. INTRODUCTION TO FUNCTIONS

The student will:
$\square \quad 1$.

Use appropriate algebraic vocabulary:

- relation
- function
- domain
- range

2. ___ Understand what a function is and define a function by using tables and graphs
3. ___ Identify the domain and range of a function
4. \qquad Use the vertical line test to determine if a graph is a function
5. \qquad Find the value of the function given the domain
6. \qquad Graph a linear function on a coordinate plane

VII. LINEAR EQUATIONS

The student will:
\qquad Use appropriate algebraic vocabulary:

- linear equation
- slope
- x and y intercepts
- slope-intercept form of an equation
- standard/general form of an equation

2. \qquad Identify a linear equation
3. \qquad Differentiate between linear equations written in standard / general form and those written in slope-intercept form
4. \qquad Transform linear equations from one form to another
5. \qquad Understand and use the slope-intercept method of graphing a linear equation
6. \qquad Understand and use the x and y intercept method of graphing a linear equation
7. \qquad Determine the slope of a line when given the graph of the line
8. \qquad Determine the slope of a line algebraically using the slope formula when given two points
9. \qquad Determine the equation of a line when given

- the slope and the y-intercept
- the slope and one point on the line
- two points on the line

10. \qquad Determine the midpoint of a line segment
11. \qquad Determine the distance between two points

VIII. SYSTEMS OF LINEAR EQUATIONS IN 2-SPACE \& 3-SPACE

The student will:

$\square \quad 1$. \qquad Solve systems of linear equations in two variables by using:

- graphs
- linear combinations
- substitution method

2. ___ Understand that solution sets of systems of linear equations can result in:

- a single ordered pair (intersecting lines)
- the empty set (parallel lines)
- infinitely many ordered pairs (coincident lines)
$\square \quad 3$.

3. ___ Graph linear equations in two variable on a coordinate plane using:

- x - and y-intercepts
- slope and y-intercept
- coordinate points
$\square \quad 4$. \qquad Solve for the slope of a line and the equation of a line using:
- slope formula
- slope-intercept form
$\square \quad 5$. \qquad Solve real-life application problems using systems of linear equations:
- wind and water current problems
- other types of applicable problems

IX. INEQUALITIES

The student will:

\square	1.
\square	$2 . \quad$
\square	3.
\square	4.

2. Solve and graph combined inequalities involving both "and" / "or" situations
3. \qquad Solve and graph absolute value equations Solve and graph absolute value inequalities involving both "and" / "or" situations
4. \qquad Solve and graph linear inequalities in two variables
5. \qquad Solve and graph systems of linear \& quadratic inequalities by graphing

X. RATIONAL AND IRRATIONAL NUMBERS

The student will:
$\square \quad 2$
2. \qquad
3. \qquad
$\square \quad 4$. \qquad Express rational numbers as decimals or fractions Find square roots of numbers that have rational square roots Simplify radicals Work with problems containing radical expressions in the following way:

- simplify products and quotients of radicals
- simplify sums and differences of radicals
- multiply binomials containing square-root radicals
- rationalize binomial denominators
- solve radical equations

XI. COMPLEX NUMBERS

The student will:

Identify the real and imaginary components of complex numbers
2. _ Simplify square roots of negative numbers
\qquad Add, subtract, multiply, and divide complex numbers

XII. QUADRATIC FUNCTIONS

The student will:

1. \qquad Solve quadratic equations by completing the square
2. \qquad Solve quadratic equations by using the quadratic formula
3. \qquad Find the determinant to determine the nature of its roots
4. \qquad Graph quadratic equations and their transformations
5. \qquad Solve systems of quadratic equations

XIII. CONIC SECTIONS

The student will:
$\begin{array}{ll}\square & 1 \\ \square & 2\end{array}$ \qquad Find the distance between any two points

- 3 .
\qquad Find the midpoint of a line segment joining any two points
$\square \quad 4$. \qquad Write the standard form of the equation of a parabola, graph a parabola, and find the vertex, directrix, focus, axis of symmetry, and latus rectum
\qquad Write the standard form of the equation of a hyperbola, graph a hyperbola, and find the center, vertices, equations of the asymptotes, and foci
$\square \quad 6$. \qquad Write the standard form of the equation of a ellipse, graph an ellipse, and find the center, vertices, co-vertices, and foci

XIV．LINEAR ALGEBRA（MATRICES）

The student will：

\square	$1 . \quad$ I
\square	$2 . \quad$ A
\square	$3 . \quad$

Identify \＆Describe Matrices
$\square \quad 2$ ． \qquad Add，Subtract，Multiple，Transpose Matrices
－ 4. \qquad Use Row－Reduction（Gaussian elimination）to solve a system via the Graphing Calculator
$\square \quad 5$ ． \qquad Evaluate inverses \＆determinants Apply Cramer＇s method

XV．LOGARITHMIC AND EXPONENTIAL FUNCTIONS

The student will：

\square	1.
\square	2.
\square	3.
\square	4.
\square	5.
\square	

－ 6. \qquad Solve logarithmic and exponential equations using a graphing utility

XVI．SEQUENCES \＆SERIES

The student will：

\square	1.
\square	$2 . \square$
\square	3．
\square	4．
\square	5．
\square	6.

2. \qquad Arithmetic Sequences \＆Series
3. Geometric Sequences \＆Series
4.

\qquad Sigma notation：application \＆expansion
－ Address a variety of Sequence \＆Series applications

XVII．PROBABILTY

The student will：

1. \qquad Counting Principle
2. \qquad Permutation \＆Combinations
3. \qquad Factorial notation \＆Application
4. \qquad Discrete probability
5. \qquad Draw and interpret Venn Diagrams

XVIII．TRIGONOMETRIC FUNCTIONS

The student will：

1. \qquad Find degree and radian measures of a angle
2. \qquad Find sine，cosine，tangent，and reciprocal functions of an acute triangle
3. \qquad Find trigonometric functions of general angles

I. LANGUAGE OF GEOMETRY

The student will:

1. \qquad Use and draw representations of the undefined terms: point, line and plane
2. \qquad Use postulates and theorems relating points, lines and planes
3. \qquad Use the terms collinear, coplanar, equidistant and intersection
4. \qquad Use symbols for lines, segments, rays and distances
5. \qquad Find the length of a segment on a number line

- 6. U U Use the Ruler Postulate and the Segment Addition Postulate

■ 8. \qquad Apply the definition and theorems about perpendicular lines Use postulates and theorems relating points, lines and planes

II. ANGLES

The student will:

\square	1.
\square	2.
\square	3.
\square	4.
\square	5.
\square	6.
\square	7.
\square	8.

III. LOGICAL REASONING

The student will:

and	Recognize the hypothesis and the conclusion of an if-then statement
State the converse of an if-then statement and develop proof by	
counterexample	

IV. PARALLEL LINES AND PLANES

The student will:
2. \qquad

Distinguish between intersecting lines, parallel lines and skew lines State and apply the theorem about the intersection of two parallel lines by a third plane
\qquad Identify the angles formed when two lines are cut by a transversal Apply the postulates and theorems about parallel lines
5. Apply the theorems about a parallel and a perpendicular to a given line through a point outside the line

V. TRIANGLES

The student will:
$\begin{array}{ll}\square & 1 \\ \square & 2\end{array}$ \qquad Use the Triangle Sum Theorem
\qquad Understand properties and their proofs for triangles to include scalene, isosceles and equilateral
\qquad Apply the theorems and corollaries about isosceles triangles
\square 5. Apply the properties and theorems associated with the median, the altitude, the perpendicular bisector and the angle bisector

VI. CONGRUENT TRIANGLES

The student will:

VII. QUADRILATERALS

The student will:
$\square \quad 1$. \qquad Apply the definition of a parallelogram and the theorems about properties of a parallelogram
$\square \quad 2$. \qquad Prove that certain quadrilaterals are parallelograms
$\square \quad 3$. \qquad Apply the definitions and identify the special properties of a rectangle, a rhombus and a square
$\square \quad 4$.
4. \qquad Determine when a parallelogram is a rectangle, rhombus or square
\qquad Apply the definitions and identify the properties of a trapezoid, isosceles trapezoid and kite

VII. INEQUALITIES

The student will:

Apply properties of inequality to positive numbers, lengths of segments and measures of angles
 State and use the Exterior Angle Inequality Theorem State and apply the Triangle Inequality Theorem
4. ___ State and apply the theorem relating unequal sides and unequal angles of a triangle

VIII. SIMILARITY

The student will:

\square	
\square	.
\square	3.
\square	4.
\square	5.
\square	6.
\square	7.
\square	8.

$\begin{array}{ll}\square & 6 . \\ \square & 7 .\end{array}$ Apply the Mid-Segment Theorem

IX. RIGHT TRIANGLES

The student will:
$\square \quad 1$. \qquad Simplify radical expressions
2. \qquad Determine the geometric mean between two numbers
$\square \quad 3$. \qquad State and apply the relationships that exist when the altitude is drawn to the hypotenuse of a right triangle
$\square \quad 4$. \qquad State and apply the Pythagorean Theorem to find the lengths of segments, the midpoints of segments, the distance between a point and a line
$\square \quad 5$. \qquad State and apply the converse of the Pythagorean Theorem and related theorems about obtuse and acute angles
$\square \quad 6$. \qquad Determine the lengths of two sides of a $45^{\circ}-45^{\circ}-90^{\circ}$ or a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle when the length of the third side is know
$\square \quad 7$. \qquad Solve right triangle problems by using the sine, cosine and tangent ratios

X. CIRCLES

The student will:
\qquad Understand basic conjectures and proofs of properties of a circle to include investigations of π
2. \qquad Develop the concept of the diameter-chord relationships in circles
3. \qquad Apply the formulas for the circumferences and areas of circles
4. \qquad Develop relationships between the area and central angles in circles
5. \qquad Use the formulas for arc length and the areas of sectors of a circle
6. \qquad Understand angle and arc length relationships in circles
7. \qquad Apply the proofs for theorems of angles, chords, secants and tangent segments
8. \qquad Apply the general equation of the circle using its locus of points

XI. CONSTRUCTIONS

The student will:
$\square \quad 1$. \qquad Show proof of geometric theorems using construction tools (straight edge and compass)

XII. AREAS OF PLANE FIGURES

The student will:
\qquad Use the formulas for the areas of rectangles, parallelograms, triangles, rhombuses, trapezoids and regular polygons
$\square \quad 2$. \qquad Apply the relationships between scale factors, perimeters and areas of similar figures
$\square \quad 3$. \qquad Use areas to solve problems involving geometric probability

XIII. AREA AND VOLUME OF SOLIDS

The student will:
\qquad Apply the formulas for the surface area of prisms, cylinders, pyramids, cones and spheres
$\square \quad 2$. \qquad Apply the formulas for volume of prisms, cylinders, pyramids, cones and spheres
$\square \quad 3$. \qquad Recognize the properties of similar solids

XIV. COORDINATE GEOMETRY

The student will:
\qquad Apply the distance and midpoint formula
$\square 2$. \qquad Understand the basic properties of vectors
$\square 3$. \qquad Given a polygon, choose a convenient placement of coordinate axes and assign appropriate coordinates
$\square \quad 4$. \qquad Prove statements by using coordinate geometry methods

XV. TRANSFORMATIONS

The student will:
$\square \quad 1$. \qquad Recognize and use terms: image, preimage, mapping, one-to-one mapping, transformation, isometry and congruence mapping
$\square \quad 2$.
3. \qquad Recognize and use terms identity and inverse in relation to mappings
$\square 3$ \qquad Locate images of figures by reflection, translation and glide reflection, rotation, dilation/reduction, composites of mapping
$\square \quad 4$.
4.
5. \qquad Describe the symmetry of figures and solids
$\square \quad 5$. \qquad Recognize tessellations

I．ALGEBRA CONCEPTS

The student will：
$\square \quad 1$ ． \qquad Recognize monomials and polynomials，and add，subtract，multiply and divide polynomials
\qquad Review methods for factoring polynomials Review how to reduce，multiply，divide，add and subtract rational expressions
$\square 6$ ． \qquad Review evaluating square roots and rational exponents

II．POLYNOMIALS

The student will：
$\square \quad 1$ ． \qquad Solve quadratic equations by factoring，completing the square and the quadratic formula
2. \qquad Solve problems involving quadratic equations
3. \qquad Solve systems of polynomial function：conics and lines
4. \qquad Find all zeros of a polynomial function
5. \qquad Know the factoring of a sum and／or difference of cubes
6. \qquad Factor a polynomial using the rational roots theorem and long division or synthetic division

III．GRAPHING

The student will：

1. \qquad Locate x－and y－intercepts
2. \qquad Locate discontinuities：point，infinite \＆jump
3. \qquad Locate all horizontal and vertical asymptotes
4. \qquad Write the equation of a line in slope－intercept form，point slope form or general form
■ 5 ． \qquad Write the standard form of the equation of a circle，graph a circle and find the center and radius of a circle
$\square \quad 6$ ． \qquad Write the standard form of the equation of a parabola，graph a parabola，and find the vertex，directrix，focus，axis of symmetry and latus rectum
$\square \quad 7$ ． \qquad Write the standard form of the equation of a hyperbola，graph a hyperbola， and find the center，vertices，equations of the asymptotes and foci
－ 8 ． \qquad Write the standard form of the equation of an ellipse，graph an ellipse，and find the center，vertices，co－vertices and foci
5. \qquad Draw and interpret scatter diagrams
6. \qquad Distinguish between linear and nonlinear relations
7. \qquad Use a calculator to find the line of best fit
8. \qquad Identify the graph of a function
9. \qquad Graph the following functions：
－rational
－polynomial
－root
－exponential
－logarithmic

IV. FUNCTIONS

The student will:
\qquad Study linear, rational, root, polynomial, exponential and logarithmic functions
2. \qquad Identify the domain and range of a relation
\qquad Model relations using diagrams, graphs and set notation
4. \qquad Identify the range, domain and intercepts given the graph of a function
5. \qquad Find the value of a function given the domain
$\square \quad 6$. \qquad Graph linear functions on a coordinate plane
7. \qquad Graph the following types of functions:

- piecewise
- constant
- identity
- quadratic
- cube root and square root
- reciprocal
- absolute value

V. COMPLEX NUMBERS

The student will:
$\square \quad 2$. \qquad
3. \qquad Identify the real and imaginary components of complex numbers Simplify square roots of negative numbers Add, subtract, multiply and divide complex numbers

VI. LOGARITHMIC FUNCTIONS

The student will:
\qquad Change exponential expressions to logarithmic expressions
2. Change logarithmic expressions to exponential expressions
3. Evaluate, determine the domain and graph logarithmic functions
5. Solve problems using direct, indirect and joint variation
6. Solve logarithmic equations using properties of logarithms Solve logarithmic and exponential equations using a graphi

VII. CONICS

The student will:
$\begin{array}{ll}\square & 1 . \\ \square & 2 .\end{array}$ \qquad Identify conic sections: (refer to section C)

- 3 .
\qquad Discuss and graph conics (refer to section C)
$\square \quad 4$. \qquad Recognize and analyze conic sections equations given in general form Graph and interpret systems of conic sections (include inequalities)

VIII. LINEAR ALGEBRA (MATRICES)

The student will:

1. \qquad Identify \& describe matrices

- 2. \qquad Add, subtract, multiple, transpose matrices
$\square \quad 4$.
\qquad Use Row-Reduction to solve a system via the Graphing Calculator
$\square \quad 5$.
\qquad Evaluate inverses \& determinants

IX. SEQUAENCES \& SERIES

The student will:

1. \qquad Define, construct \& explain Recursive formulas
2. \qquad Arithmetic sequences \& series
$\begin{array}{ll}\square & 3 . \\ \square & 4 .\end{array}$ \qquad Geometric sequences \& series
$\square \quad 5$.
\qquad Geometric \& arithmetic means
$\square \quad 6$. \qquad Sigma notation: application \& expansion

X. PROBABILTY

The student will:

\square	1.
\square	$2 . \quad$
\square	3.
\square	4.

The student will: Counting principle
$\square \quad 2$. \qquad Permutation \& combinations
$\square \quad 4$.
\qquad Factorial notation \& application
5. Draw and interpret Venn Diagrams

XI. TRIGONOMETRY

The student will:
$\square 1$ \qquad Identify the following:

- period
- amplitude
- phase shift
- vertical shift
$\square \quad 2$ \qquad Master sine, cosine and tangent values corresponding to the unit circle at angles of: $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \pi\left(0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}, 180^{\circ}\right)$ and multiples of the same

3.
4. \qquad Define and use circular trigonometric functions
5. \qquad Define and use trigonometric function of right triangle
6. \qquad Compute the values of trigonometric functions of angles
7. \qquad Graph trigonometric functions and their transformations
8. \qquad Graph sinusoidal functions and find an equation for a sinusoidal graph
9. \qquad Find an angle using a calculator and an inverse trigonometric function
\qquad Prove trigonometric identities
10. Use Law of Sines and Law of Cosines to solve triangle and applied problems

I. ALGEBRA CONCEPTS

The student will:

1. \qquad Review process for factoring polynomials

- 2. \qquad Review how to find domain and range

3. \qquad Review how to solve linear inequalities
4. \qquad Write solutions in set and interval notation
5. \qquad Check solutions through equations
6. \qquad Use patterns for exponents
7. \qquad Emphasize the importance of using the correct unit of measurement
8. \qquad Evaluate / use area and volume
9. \qquad Solve rate problems
10. \qquad Create deductive proofs
11. \qquad Use inductive reasoning
12. \qquad Analyze general / standard forms for equations

II. FUNCTIONS AND THEIR GRAPHS

The student will:

$\square \quad 1$. \qquad Graph polynomial functions, trig functions, exponential functions, logarithmic functions, conic sections, rational functions, and special functions
ㅁ 2 . \qquad Graph polynomials after algebraically analyzing all aspects (x - and y intercept, turns, symmetry, end behavior, etc.)
$\square \quad 3$. \qquad Develop a connection between factors, zeroes, x-intercepts, and solutions to $f(x)=0$
\qquad Review transformations and combinations of functions Apply horizontal line test to determine if a function is invertible
6. Find inverse functions
8. Determine equations from graphs Develop rules for graphing functions

III. POLYNOMIAL FUNCTIONS

The student will:
\qquad Analyze polynomial functions of a higher degree using the rational roots theorem, synthetic division and Descartes' rule of signs to find the zeroes of the functions
$\square \quad 2$. \qquad Graph composite and inverse functions
$\square \quad 3$.
3. \qquad Use synthetic and long division
\qquad Review complex numbers and how to find complex zeroes of a polynomial function
$\square \quad 5$.
5. \qquad Apply Pascal's Triangle to find binomial coefficients

- $\quad 7$. \qquad Analyze polynomial functions and root functions Perform arithmetic operations, composition, and find the inverse of functions

IV. RATIONAL FUNCTIONS

The student will:
\qquad Solve inequalities (linear, absolute value, polynomial, and rational)
$\square \quad 2$. \qquad Graph inequalities (linear, absolute value, polynomial, and rational)

- 3 .

3. \qquad Graph rational functions
$\begin{array}{ll}\square & 4 . \\ \square & 5 .\end{array}$ \qquad Identify vertical, horizontal, and slant asymptotes
$\square \quad 6$.
\qquad Identify the range, domain, and intercepts
$\begin{array}{ll}\square & 7 . \\ \square & 8 .\end{array}$
\qquad Analyze rational functions
$\begin{array}{ll}\square & 8 . \\ \square & 9 .\end{array}$ \qquad Introduce limits
\qquad Perform partial fraction decomposition Identify end behavior

V. EXPONENTIAL AND LOGARITHMIC FUNCTIONS

The student will:
\qquad Graph exponential and logarithmic functions

- 2. \qquad Analyze exponential and logarithmic functions

3
4

3.
4. \qquad Evaluate logarithms, exponentials, and radicals
\qquad Evaluate, determine the domain, and graph logarithmic functions
5 \qquad Use laws of exponents / logarithms
5.

7 \qquad Use patterns for exponents and logarithms
7. \qquad Use zeros of equations applying exponents, radicals, and logarithms to estimate
8. \qquad Perform composition and inversion of functions
9. \qquad Solve exponential growth and decay problems

VI. TRIGONOMETRY

The student will:

1. \qquad Define degree and radian measure
2. \qquad Convert between degree and radian measure
3. \qquad Define trig functions using the unit circle, right triangles, and trig functions of any angle
$\square \quad 4$
4. \qquad Calculate arc length and sector area of circles
5. \qquad Evaluate angular/linear velocity Know trigonometric function values for all integral multiples of $\frac{\pi}{6}$ and $\frac{\pi}{4}$

- 7 . \qquad Use $30^{\circ}-60^{\circ}-90^{\circ}$ and $45^{\circ}-45^{\circ}-90^{\circ}$ triangles to derive those values
- 9.

\qquad Prove trig identities
\qquad Graph sine, cosine, tangent, secant, cosecant and other cotangent functions
10. \qquad Define and graph inverse trig functions
11. \qquad Perform compositions of functions
12. \qquad Solve trig equations
13. \qquad Manipulate fundamental identities, sum and difference formulas, multiple angle formulas, and product and sum formulas

VI. (Trigonometry Continued)

$\begin{array}{ll}\square & 14 . \\ \square & 15 . \\ \square & 16 . \\ \square & 17 . \\ \square & 18 . \\ \text { VII. } & \text { VECTORS }\end{array}$
 The student will:

\qquad Calculate vector magnitude
2. \qquad Use vectors and rotations
3. \qquad Add, subtract, and find a scalar product and the magnitude of a vector

- 4. \qquad Find a vector from its direction and magnitude
- 5 . \qquad Evaluate Dot Product and Cross Product

6. \qquad Apply Dot Product and Cross Product to various real-world applications

VIII. POLAR COORDINATES AND COMPLEX NUMBERS

The student will:
\qquad Define Properties of Complex numbers
2. \qquad Describe the relationship between polar and complex numbers; convert complex numbers to polar form and vice versa
$\square \quad 3$. \qquad Compute powers and roots of complex numbers
\square
\square
\square \qquad Compute products and quotients of complex numbers in polar form
$\square 6$. \qquad Convert rectangular coordinates to polar coordinates and vice versa
$\square \quad 7$. \qquad Graph polar curves

IX. STATISTICS AND PROBABILTY

The student will:
$\begin{array}{ll}\square & 1 . \\ \square & 2 .\end{array}$ \qquad Introduce and evaluate factorials
$\square \quad 3$.
\qquad Use theories of combination and permutation
\qquad Use normal distribution graphs

X. ANALYTICAL GEOMETRY

The student will:

1. \qquad Graph conic sections

- 2 . \qquad Analyze conic sections

3. \qquad Solve conic section problems
4. \qquad Write the standard form of the equation of a circle, graph a circle, and find the center and radius of a circle
\qquad Analyze properties and graphs of functions defined parametrically
5. \qquad Convert functions defined parametrically to rectangular coordinates by eliminating the parameter

- 7. \qquad Use parametrically defined functions to model motion
XI. LINEAR ALGEBRA

The student will:
$\square \quad 1$. \qquad Perform matrix arithmetic (sums, differences, scalar multiplication, matrix multiplication)
\qquad Calculate determinants using minors and co-factors and the Rule of Sarrus
$\square \quad 3$. Solve systems of equations using both matrix algebra (inverse matrices) and Cramer's Rule

XII. MATHEMATICAL INDUCTION

The student will:

\square	1.	Define recursive and explicit formulas
\square	$2 . _$	Review sequences and series
\square	$3 . _$	Construct mathematical induction proofs

XIII. LIMITS OF FUNCTIONS (INCLUDING ONE-SIDED LIMITS)

The student will:
$\square \quad 2$ \qquad
$\begin{array}{ll}\square & 3 . \\ \square & 4\end{array}$ \qquad

- 5 . \qquad
$\square 6$. \qquad

Develop an intuitive understanding of the limiting process Calculate limits using algebra Estimate limits from graphs or tables of data Develop an understanding of asymptotes in terms of graphical behavior Describe asymptotic behavior in terms of limits involving infinity

- 7 . \qquad Develop an intuitive understanding of continuity (The function values can be made as close as desired by taking sufficiently close values of the domain) Develop an understanding of continuity in terms of limits

XIV. DERIVATIVES

The student will:
\qquad Define average rate of change of a function on an interval
2. \qquad Interpret an instantaneous rate of change as the limiting case of an average rate of change
$\begin{array}{ll}\square & 3 . \\ \square & 4\end{array}$ \qquad Interpret a derivative as an instantaneous rate of change
4. \qquad Present a derivative graphically, numerically and analytically
5. \qquad Interpret a derivative as an instantaneous rate of change
6. \qquad Define a derivative as the limit of the difference quotient

*Adapted from the AP Calculus (AB) topic outline. Additional topics should include those topics from the AP Calculus (BC) outline, available at collegeboard.org

I. FUNCTIONS, GRAPHS AND LIMITS

A. Analysis of Graphs

The student will:
$\square \quad 2$.
\qquad
\qquad

Use technology to produce graphs of functions Understand the interplay between the geometric and analytic information Use calculus both to predict and to explain the observed local and global behavior of a function

B. Limits of Functions (including one-sided limits)

The student will:
$\square \quad 1$. \qquad Develop an intuitive understanding of the limiting process
$\square \quad 2$. \qquad Calculate limits using algebra
$\square 3$. \qquad Estimate limits from graphs or tables of data
C. Asymptotic and Unbounded Behavior

The student will:
$\begin{array}{ll}\square & 1 . \\ \square & 2\end{array}$ \qquad Develop an understanding of asymptotes in terms of graphical behavior

- 3 .
\qquad Describe asymptotic behavior in terms of limits involving infinity
\qquad Compare relative magnitudes of functions and their rates of change to include contrasting exponential growth, polynomial growth, and logarithmic growth

D. Continuity as a Property of Functions

The student will:
$\square \quad 1$. \qquad Develop an intuitive understanding of continuity (The function values can be made as close as desired by taking sufficiently close values of the domain)

- 2 .

3. \qquad Develop an understanding of continuity in terms of limits
\qquad Develop a geometric understanding of graphs of continuous functions including the Intermediate Value Theorem and Extreme Value Theorem

II. DERIVATIVES

A. Concept of the Derivative

The student will:
$\square \quad 1$. \qquad Present a derivative graphically, numerically, and analytically
$\square \quad 2$. \qquad Interpret a derivative as an instantaneous rate of change
$\square 3$. \qquad Define a derivative as the limit of the difference quotient
4. \qquad Determine the relationship between differentiability and continuity

B. Derivative at a Point

The student will:

Provide examples of the slope of a curve at a point, including points at which there are vertical tangents and points at which there are no tangents

- 2 . \qquad Provide examples of a tangent line to a curve at a point and local linear approximation
- 3 . \qquad Describe instantaneous rate of change as the limit of average rate of change
$\square \quad 4$. \qquad Approximate rate of change from graphs and tables of values

C. Derivative as a Function

The student will:
$\square \quad 1$. \qquad Understand the corresponding characteristics of graphs of f and f^{\prime}
$\square \quad 2$. \qquad Understand the relationship between the increasing and decreasing behavior of f and the sign of f^{\prime}
$\begin{array}{lll}\square & 3 . & \text { U } \\ \square & 4 . & \text { S } \\ \square & 5 . & \text { T }\end{array}$ Understand the Mean Value Theorem and its geometric consequences
\qquad Translate verbal descriptions into equations involving derivatives and vice versa

D. Second Derivatives

The student will:
\qquad Understand the corresponding characteristics of the graphs of f, f^{\prime}, and $f^{\prime \prime}$
$\square \quad 2$. \qquad Understand the relationship between the concavity of f and the sign of f "
$\square 3$. \qquad Describe points of inflection as places where concavity changes

E. Applications of Derivatives

The student will:

Analyze curves, including the notions of monotonicity and concavity Understand optimization, both absolute (global) and relative (local) extrema Model rates of change, including related rates problems Use implicit differentiation to find the derivative of an inverse function Interpret the derivative as a rate of change in varied applied contexts, including velocity, speed, and acceleration

- 6 \qquad Understand the geometric interpretation of differential equations via slope fields and the relationship between slope fields and solution curves for differential

F. Computation of Derivatives

The student will:
$\square \quad 1$. \qquad Demonstrate knowledge of the derivatives of basic functions:

- power functions
- exponential functions
- logarithmic functions
- trigonometric functions
- inverse trigonometric functions
\qquad Understand and use the basic rules for the derivative of sums, products, and quotients of functions

3. \qquad Understand chain rule and implicit differentiation

II. INTEGRALS

A. Interpretations and Properties of Definite Integrals

The student will:

- 1 . \qquad Interpret a definite integral as a limit of Riemann sums
$\square \quad 2$. \qquad Interpret a definite integral of the rate of change of a quantity over an interval interpreted as the change of the quantity over the interval:

■ 3 . \qquad $\int_{i}^{b} f^{\prime}(x) d x=f(b)-f(a)$.
\qquad Understand and use the basic properties of definite integrals, including additivity and linearity

B. Applications of Integrals

The student will:
$\square \quad 1$. \qquad Use appropriate integrals in a variety of applications to model physical, biological, or economic situations
$\begin{array}{ll}\square & 2 . \\ \square\end{array}$ \qquad Use the integral of a rate of change to give accumulated change
$\square \quad 3$. \qquad Use the method of setting up an approximating Riemann sum and representing its limit as a definite integral
$\square \quad 4$. \qquad Specific applications should include:

- finding the area of a region
- finding the volume of a solid with known cross sections
- finding the average value of a function
- finding the distance traveled by a particle along a line

C. Fundamental Theorem of Calculus

The student will:
$\square \quad 1$. \qquad Use the Fundamental Theorem to evaluate definite integrals
 Use the Fundamental Theorem to represent a particular antiderivative and the analytical and graphical analysis of functions so defined

D. Techniques of Antidifferentiation

The student will:

Use antiderivatives following directly from derivatives of basic functions

- 2 . \qquad Use antiderivatives by substituting variables (including change of limits for definite integrals)

E. Applications of Antidifferentiation

The student will:

- 1 . \qquad Find specific antiderivatives using initial conditions, including applications to motion along a line
$\square \quad 2$. \qquad Solve separable differential equations and use them in modeling. In particular, study the equation $y^{\prime}=k y$ and exponential growth

F. Numerical Approximations to Definite Integrals

The student will:
\qquad Use Riemann sums (using left, right, and midpoint evaluation points) and trapezoidal sums to approximate definite integrals of functions represented algebraically, graphically, and by tables of values

I. SUMMARIZING DATA WITH FREQUENCY TABLES

The student will:
$\square \quad 1$. \qquad Organize or normalize data into a frequency table or relative distribution table
$\begin{array}{ll}\square & 2 . \\ \square & 3\end{array}$ \qquad Construct a joint frequency contingency table from two categorical variables
3. \qquad Construct a frequency polygon and a frequency curve from a frequency (or relative frequency) distribution
$\square \quad 4$. \qquad Construct an objective given a relative cumulative frequency distribution

II. PICTURES OF DATA

The student will:

1. \qquad Develop methods of displaying numerical data in a organized form
$\square \quad 2$. \qquad Construct a histogram from a frequency distribution

- 3. \qquad Distinguish between a histogram and a stem-and-leaf diagram
$\begin{array}{r} \\ -\quad 5 . \\ \hline\end{array}$ \qquad Construct a bar graph from given data
- 6 . \qquad Construct a circle graph from given data

7. \qquad Identify distortions (illustrations) in graphs or picture charts

- 8. \qquad Plot points on a scattergram when given a bivariate distribution
$\square \quad 9$. \qquad Construct a Normal curve for data and standardized data
*Graphing with Technology: Graphing Calculator, Microsoft Excel, CAS, etc.

III. MEASURES OF CENTER

The student will:
\qquad Compute the mean, median, and mode for a set of numbers
\qquad Describe common characteristics of the mean, median, and mode

- 3 .

3. ___ Compute harmonic and geometric means for a set of data
4. Locate the relative positions of the mean, median, and mode on a skewed frequency distribution
$\square \quad 5$. \qquad Describe how measures of dispersion differ from measures of central tendency
$\square \quad 6$. \qquad Determine an appropriate measure of central tendency for data scaled on nominal, ordinal, interval, and ratio levels
$\square \quad 7$. \qquad Explain why the mean is influenced by extreme values in a distribution while the median is relatively unaffected by extreme values

IV. MEASURE OF VARIATION

The student will:
\qquad Calculate the standard deviation
\qquad

- 3 3. ___ Interpret the mean deviation
\qquad Distinguish among definitions of the range of a set of data

5. \qquad Interpret the standard deviation from a given value of the variance for a variable
$\square \quad 6$.
6. ___ Understand and use the 5-number summary including:

- the minimum value
- the first quartile
- the median, or second quartile
- the third quartile
- the maximum value

7. Compute the sum of the squares of the deviation scores
$\square \quad 8$. \qquad Distinguish between "real" and "apparent" class intervals
8. \qquad Interpret the meaning of an individual standard score relative to the distribution of concern
\qquad Describe characteristics of the normal curve
9. \qquad Interpret the meaning of r and R^{2}
*All interpretations should be written within the context of the problem.

V. MEASURES OF POSITION

The student will:
$\square \quad 1$. \qquad Describe Z-score and T-score numerical distributions in terms of the mean and standard deviation
$\square \quad 2$. \qquad Transfer raw scores into corresponding standard Z-scores
\qquad Convert a set of Z-scores into a distribution of standard scores with any given mean and standard deviation
$\square \quad 4$. \qquad Given a set of Z-scores, use characteristics of the normal curve to convert the Z -scores into percentile equivalents
$\square \quad 5$. \qquad Given a percentile score, use the characteristics of the normal curve to transform the percentile to a standard Z-score
$\square \quad 6$. \qquad Convert a set of Z-scores into a distribution of T-scores

VI．HYPOTHESIS TESTING

The student will：
\qquad Define Hypothesis testing：null versus alternative
2. \qquad Hypothesis testing for one proportion
3. \qquad Hypothesis testing for two proportions
4. \qquad Hypothesis testing for the mean $\mathrm{n} \geq 30$ and $\mathrm{n}<30$
5. \qquad Hypothesis testing for the difference between two means
6. \qquad Hypothesis testing for the slope of a regression line
7. \qquad Hypothesis testing for the association between two categorical variables
$\begin{array}{r}8 \\ \hline\end{array}$ \qquad Discuss and research Ethical research practices
\qquad Discuss and explain Type I and Type II Error

VII．CONFIDENCE INTERVALS

The student will：

1. \qquad Define confidence intervals
2. \qquad Confidence intervals for one proportion
3
4 \qquad Confidence intervals for two proportions
3.

\qquad Confidence intervals for the mean $\mathrm{n} \geq 30$ and $\mathrm{n}<30$
6. \qquad Confidence intervals for the difference between two means

VIII．CORRELATION AND REGRESSION

The student will：

1. \qquad Define correlation
2. Define linear regression
－ 3 \qquad Compare \＆contrast a regression line vs．a least－square regression line
－ 5 ．
\qquad Measures of regression and prediction intervals
$\square \quad 6$ ． \qquad Explain r and R^{2} Calculate the slope of a regression line using statistical formulas

IX．CHI－SQUARE TEST \＆F－DISTRIBUTION

The student will：

1. \qquad Define＂Goodness－of－Fit＂
2. \qquad Define and assess independence
3. \qquad Compare two variances
－ 4. \qquad Define when to use an ANOVA
\qquad Properly run and interpret an ANOVA

X. GENERAL CONCEPTS/DISTRIBUTIONS NAMES

The student will:
$\square \quad 1$. \qquad Be able to write a research based paper within the context of the study
$\square \quad 2$ \qquad Use a process such as S.P.D.C.: State, Plan, Do, Conclude to report findings
$\square \quad 4$. \qquad Use calculator/computer to manipulate various statistical data
$\square \quad 5$.
5. Normal Distribution
$\square 6$. \qquad F-Distribution
$\square \quad 7$.
7. ANOVA analysis
$\square \quad 8$. \qquad t Distribution

XI. NON-PARAMETRIC TEST (*Time permitting)

The student will:
$\square \quad 1$. \qquad Sign test
2. \qquad Wilcoxon tests3. \qquad Kruskal-Wallis test
4. \qquad Rank correlation

Sample Lesson
 Kindergarten

Making Patterns

Objective: The student will identify, create, copy, and extend patterns using objects and pictures.

Materials:

- chalk and chalkboard
- triangle and square blocks (or any 2 shapes)
- paper
- crayons

Procedure:

1. Draw a pattern on the chalkboard using triangles and squares.
2. Have children describe the pattern using the names of the shapes.
3. Have students name the shape(s) that would come next to continue the pattern.
4. Repeat with another pattern.
5. Have children create their own patterns using the triangles and squares.
6. Draw and color the pattern on paper.
7. Repeat the activity using different shapes.
8. As an extension, students exchange papers and have a partner extend the pattern.

Assessment:

- Teacher observations
- Pattern papers

Resource: mathforum.org

Sample Lesson
Grade 1

Odd and Even Numbers

Objectives:

- To represent even and odd numbers concretely as pairs and left over ones.
- To identify even and odd numbers to 50 .

Materials:

- Unifix Cubes
- Odd and Even mats, 1 for each student and 1 transparency
- Number cards 1-50
- Missing Mittens by Stuart J. Murphy

Procedure:

1. Advise students that today they will learn to identify odd and even numbers.
2. Ask children what comes in pairs.
3. Lead children to see that pair means two. (mittens, gloves, shoes, earrings, shoe laces)
4. Read children Missing Mittens by Stuart J. Murphy
5. As you read, ask children if they can predict what will come next in the story, where they think the missing mittens are, and what they notice about the number of mittens.
6. Pass out odd/even mats and unifix cubes.
7. Ask students to put 4 unifix cubes in front of them and make pairs.
8. Ask,

- Were you able to make pairs?
- Were there any left over?

9. Model making pairs using the overhead.
10. Explain that since there are pairs with none left over, 4 is an even number.
11. Then ask students to pull out 7 unifix cubes and make pairs.
12. Model on overhead and explain that since one cube is left over after making pairs, 7 is an odd number.
13. Continue with all the numbers to 10 .
14. Write on the board in two separate columns: odd even
15. Place the number cards $1-10$ on the board and ask volunteers to come to the board and place the number under the correct heading.
16. When all the cards are in place, ask students if they see a pattern in the odd and even numbers.
17. Lead students to recognize that even numbers end with digits $0,2,4,6,8$ and odd numbers end with digits $1,3,5,7$, and 9 .
18. Remind students that a number is even if no cubes are left over and odd if one cube is left over.
19. Repeat step \#15 with larger numbers.

Assessment:

1. Ask students to explain how they know a number is even or odd.
2. Call out numbers to students and have them model on their place value mats.
3. Walk around and observe who can make pairs to identify even and odd numbers.
4. In a copybook or on a separate piece of paper, write a series of numbers. For example: $11,14,16,17,20,22,33,39,45,18,50$
5. In their copybook or on the paper, have children fold the paper in half and set up 2 columns, odd and even, and write the numbers under the correct heading.
6. Collect and check.

Internet site for odd and even numbers practice or center:
www.softschools.com/math/games/odd_even_number_game.jsp

Sample Lesson
 Grade 2

Estimating, Counting, and Sorting

Objectives:

- Practice estimating, counting, and sorting.
- Write and solve math problems.
- Explore and appreciate the literature book, "The M \& M's Brand Chocolate Candies Counting Book" by Barbara Barbieri McGrath.

Materials:

- The children's book "The M and M's Brand Chocolate Candies Counting Book."
- Pencils and paper
- Small bags of M and M's candy (one for every two students)
- Internet access

Procedure:

1. Read "The M \& M Brand Chocolate Candies Counting Book" to the children.
2. Discuss the concepts of estimation, simple addition, subtraction, forming sets, and color recognition mentioned in the book.
3. Distribute one small bag of $M \& M$'s to each pair of children.
4. Have each group estimate "how many" M \& M's are in the bag and write their findings down on their paper.
5. The children will now open their bag, and take a real count of "how many" M \& M's there are in the bag.
6. The students will talk with their partner to see if how close they were to their estimate.
7. Have the students count how many of each color there are in the bag of M \& M's, and record their findings.
8. Discuss as a class:

- Did all the bags have the same number of M \& M's?
- Did all the bags have the same number of each color?

9. Send some children to the board to write addition and subtraction sentences, using the numbers recorded from the different colors of M \& M's.
10. The students can continue to practice these concepts at this website: www.visualmathlearning.com. Click "Practice Exercises" and do the various games such as "Switcharoo Circle."

Assessment:

- The teacher will observe the oral responses of the children.
- As one student from each group writes a number sentence at the board, students from the other groups can check to see if it is correct.

Sample Lesson
 Grade 3

Multiplication Facts

Objective: The students will practice and master multiplication facts.

Procedure:

1. Create a rocket ship, separating into 12 segments. One segment each for the 1 's, 2's, 3's, 4's, 5's, 6's, 7's, 8's, 9's, 10's, 11's, 12's, and review. (ex. see rocket below)
2. Create an astronaut for each student. (you can find several in your clipart)
3. Make copies of 25 problems for each level. This website http://www.mathdrills.com has worksheets of 100 problems for each level. You can cut the worksheets into 4 parts, creating 4 small sheets of 25 problems each.
4. Separate levels into files or envelopes.
5. Each day the students take a sheet depending on their level.
6. Students have 1 minute to finish 25 problems.
7. If they score 100%, they move up to the next level.

Assessment: Scores on each level and reaching the review level of the rocket ship
Rocket example

Sample Lesson
Grade 4

Angles

Objective: The students will determine the number of degrees for each angle of each pattern block by using the right angle of the square as a reference.

Introduction: Have the students examine the pattern blocks and discuss the definition of the various shapes. Stress that the square has four right angles (90).

Materials:

- Pattern blocks
- Pencil and paper

Procedure:

1. Have the students work individually with his or her own set of pattern blocks.
2. Have the student make a chart to record their data: the shape, the number of angles and the degree of the angles.
3. Have the student write a brief description of how he/she determined the angle.
4. Have the students measure their angle to check their accuracy and then record the measurement on their chart.

Assessment: The students would turn in their data chart with their recorded data, Measurements, and the description of their strategy.

Source:

Teaching Children Mathematics. December, 1995. Vol 2. \#4. Reston: VA. NCTM.

Sample Lesson
Grade 5

Ratios

Objective: Students will use a ratio to describe a relationship between two numbers.
Materials:

- Colored chips
- Pencil and paper

Procedure:

1. Review what students know about fractions. Give each student a handful of colored chips. Have each student write down the number of chips of each color. Have students write down the fraction of chips of each color. Discuss the role of the number (describes part) and the denominator (describes whole - or total number of chips).
2. Ask all girls to stand. Tally the number of girls on the board. Ask boys to stand. Tally the number of boys on the board. Represent the number of girls and boys as fractions of the whole group. Introduce the idea of ratio. (What if we want to compare the number of girls to boys? Could we just say 11 to $13 \ldots$ Can we compare the number of boys to girls? Let's see what will happen if we have 13 to 11...)
3. Have the students work individually with his/her own set of colored chips.
4. Have the student lineup chips on his/her desk, according to color. (One color should be lined up above the other color. A pencil may be used to separate the two colors and to represent the fraction bar.)
5. Discuss the definition of ratio (describes the relationship between two numbers). Compare ratios to fractions. (Similarities should include: they look alike, they can both be reduced. Differences should include: fractions tell part-to-whole relationship, while ratios tell part-to-part relationship, we read them differently when reading aloud, ratios cannot be represented as a mixed number.)
6. Have students read the ratio of colored ships on his/her desk aloud, reducing if possible. Have the students write down the ratio.
7. Have students change desks and write down the ratio on another desk. Repeat until students grasp concept.

Assessment: Students will be able to describe the ratio of boys to girls and girls to boys in the class (without reverting to a mixed number).

Math Websites

www.Math.about.com

A website with something for everyone-lesson plan ideas, online games and links, all ages and levels.

www.AtoZteacherstuff.com

Teacher-created site designed to help teachers find online resources more quickly and easily. Find lesson plans, thematic units, teacher tips, discussion forums for teachers, downloadable teaching materials \& eBooks, printable worksheets and blacklines, emergent reader books, themes, and more.

www.teachers.net/

Lesson plans, links, webchats, and numerous other resources for the educator

www.edhelper.com

Create worksheets and design lesson plans using their worksheets and other information-grade levels from Pre-K to high school

www.visualmathlearning.com

A variety of resources are available to help educators and trainers learn about visual learning and Inspiration ${ }^{\circledR}$, Kidspiration ${ }^{\circledR}$ and the new InspireData ${ }^{\mathrm{TM}}$.

www.brainpopir.com

BrainPOP Jr. provides educational movies and homework help for K-3 students. Each animated movie has quizzes, games, vocabulary, and activities for kids. BrainPOP Jr. is a great resource for teachers and homeschools, offering lesson plans and lesson ideas that develop critical thinking and inquiry skills.

www.mathforum.org/teachers/elem/

Just about anything you need to teach math at any age level.
www.eding.k12.mn.us/creekvalley.com
Assortment
www.aaamath.com/
Assortment
www.guernsey.net/~sgibbs/roman.html
Roman Numeral conversions
http://illuminations.nctm.org/LessonDetail.aspx?ID=L406
Geometric shapes
www.sesameworkshop.org/sesamestreet/games/flash.php?contentId=110740
Sorting PreK- 1 or 2
www.teachrkids.com/
Assortment
www.geocities.com/EnchantedForest/Tower/1217/math1.html
Assortment
www.shodor.org/interactivate/activities/tessellate/?version=1.6.0_05\&browser=MSIE\&v endor=Sun_Microsystems_Inc.
Tessellations
cemc2.math.uwaterloo.ca/mathfrog/english/kidz/order.shtml
Order of operations
school.discoveryeducation.com/searchresults.cfm? $\mathrm{N}=0 \& \mathrm{Nty}=1 \& \mathrm{Ntk}=$ all\&blnPublic=1\&
$\mathrm{Ntt}=\mathrm{math}$
Assortment
www.stccs.org/education/components/docmgr/default.php?sectiondetailid=324\&catfilter $=44$
Addition, subtraction, multiplication and division practice worksheets
www.math-drills.com
Practice math skills
A+ Math.com
Practice math skills

Dude's Dilemma.com
Practice math skills
Math Skills Builder.com
Practice math skills
Spacey Math.com
_Practice math skills
Rainforest Math.com
Practice math skills
www.harcourtschool.com/menus/math_advantage.html
Concept Definitions across grade levels
www.mathgoodies.com/lessons/vol1/perimeter.html
Geometry website
www.iit.edu/~smile/ma9517.html
Introduction to volume
www.sdcoe.k12.ca.us/score/actbank/sjournal.htm
Journaling
www.nhusd.k12.ca.us/ALVE/ace/MATH/Math_Puzzles.html
Math Puzzles
aaamath.com/
Measurement
library.thinkquest.org/3804/
Metric Matters
www.dositey.com/math34.htm
Math worksheets for 4th grade
www.homeschoolmath.net/worksheets/grade_4.php
More math worksheets for 4th grade
www.berghuis.co.nz/abiator/maths/mcindex.html
Place value and problem solving
jc-schools.net/terranova-res.htm
Terra Nova practice skills
www.blountk12.org/LearningLinks/terranova.htm
Terra Nova information and practice
www.thelearningpage.org/fun_sites/CappsG_TerraNova.htm
Terra Nova math practice
www.iit.edu/~smile/ma9315.html
What's my area- a lesson plan for teachers
www.harcourtschool.com/menus/math_advantage.html
Concept Definitions across grade levels
www.mathgoodies.com/lessons/vol1/perimeter.html
Geometry website
www.lessonplanspage.com/Math45.htm
Great math lessons (various skills)
www.iit.edu/~smile/ma9517.html
Introduction to volume
www.learningplanet.com/
Learning Planet
www.scholastic.com/
Scholastic
www.sheppardsoftware.com/web_games.htm
State Games
www.ecokids.ca/pub/index.cfm
Eco Kids
yucky.discovery.com/noflash/fun_n_games/category_icky.html
Discovery Kids Yucky Lab Activities
www.brainpop.com/
Brain Pop
www.funbrain.com/
Funbrain.com
www.learningplanet.com/act/mayhem/
Math Mayhem
www.visualfractions.com/
Visual Fractions - Online Visual Fraction Tutorial
nces.ed.gov/nceskids/index.asp
National Center for Education Statistics
www.coolmath4kids.com/
Cool Math 4 Kids
nces.ed.gov/nceskids/createagraph/
Create a graph
www.multiplication.com/interactive/quickflash/flash/index.html
Multiplication Tables Practice
www.coolmath-games.com/lemonade/
Lemonade Stand
www.eduplace.com/math/brain/
Brain Teasers
www.khanacademy.org
http://education.jlab.org/solquiz/
Good practice problems
http://alex.state.al.us/lesson_view.php? id=24049
Box and Whiskers
http://nces.ed.gov/nceskids/help/user_guide/graph/howto.asp
Graphing Tutorial
http://www.heymath.com/main/samples/us18/teacherstemplate.html
Balancing Equations Flipbook
Pre-K
http://www.prekinders.com/math-center/
http://softschools.com/grades/preschool
http://www.ixl.com/promo?partner=google\&campaign=1208\&adGroup=kindergarten+m
ath\&gclid=CPvhw--Cn74CFYw70god7zsA0Q

Additional Resources for 4th Grade Teachers

Books

4th Grade Math Practice (Scholastic) (Paperback)- by Terry Cooper (Editor)
Math Strategies You Can Count On: Tools \& Activities To Build Math Appreciation, Understanding \& Skills by Char Forsten

Math Dictionary for Kids: The Essential Guide to Math Terms, Strategies, and Tables by Theresa R. Fitzgerald

